Random Multispace Quantization as an Analytic Mechanism for BioHashing of Biometric and Random Identity Inputs

Citation

Teoh, A.B.J. and Goh, A. and Ngo, D.C.L. (2006) Random Multispace Quantization as an Analytic Mechanism for BioHashing of Biometric and Random Identity Inputs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28 (12). pp. 1892-1901. ISSN 0162-8828

[img] Text (Random multispace quantization as an analytic mechanism for BioHashing of biometric and random identity inputs)
1280.pdf
Restricted to Repository staff only

Download (0B)

Abstract

Biometric analysis for identity verification is becoming a widespread reality. Such implementations necessitate large-scale capture and storage of biometric data, which raises serious issues in terms of data privacy and (if such data is compromised) identity theft. These problems stem from the essential permanence of biometric data, which (unlike secret passwords or physical tokens) cannot be refreshed or reissued if compromised. Our previously presented biometric-hash framework prescribes the integration of external (password or token-derived) randomness with user-specific biometrics, resulting in bitstring outputs with security characteristics (i.e., noninvertibility) comparable to cryptographic ciphers or hashes. The resultant BioHashes are hence cancellable, i.e., straightforwardly revoked and reissued (via refreshed password or reissued token) if compromised. BioHashing furthermore enhances recognition effectiveness, which is explained in this paper as arising from the Random Multispace Quantization (RMQ) of biometric and external random inputs.

Item Type: Article
Subjects: T Technology > T Technology (General)
Q Science > QA Mathematics > QA71-90 Instruments and machines > QA75.5-76.95 Electronic computers. Computer science
Divisions: Faculty of Engineering and Technology (FET)
Depositing User: Ms Suzilawati Abu Samah
Date Deposited: 18 Oct 2011 02:47
Last Modified: 04 Mar 2014 08:54
URII: http://shdl.mmu.edu.my/id/eprint/3290

Downloads

Downloads per month over past year

View ItemEdit (login required)