Autonomous and deterministic clustering for evidence-theoretic classifier

Citation

Poh, , Chen Li and Kiong, , Loo Chu and Rao, , M. V. C (2006) Autonomous and deterministic clustering for evidence-theoretic classifier. NEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGS , 4233. pp. 70-79. ISSN 0302-9743

Full text not available from this repository.

Abstract

This paper describes an evidence-theoretic classifier which employs global k-means algorithm as the clustering method. The classifier is based on the Dempster-Shafer rule of evidence in the form of Basic Belief Assignment (BBA). This theory combines the evidence obtained from the reference patterns to yield a new BBA. Global k-means is selected as the clustering algorithm as it can overcomes the limitation on k-means clustering algorithm whose performance depends heavily on initial starting conditions selected randomly and requires the number of clusters to be specified before using the algorithm. By testing the classifier on the medical diagnosis benchmark data, iris data and Westland vibration data, one can conclude classifier that uses global k-means clustering algorithm has higher accuracy when compared to the classifier that uses k-means clustering algorithm.

Item Type: Article
Subjects: Q Science > QA Mathematics > QA71-90 Instruments and machines > QA75.5-76.95 Electronic computers. Computer science
Divisions: Faculty of Engineering and Technology (FET)
Depositing User: Ms Rosnani Abd Wahab
Date Deposited: 10 Aug 2011 06:45
Last Modified: 10 Aug 2011 06:45
URII: http://shdl.mmu.edu.my/id/eprint/2059

Downloads

Downloads per month over past year

View ItemEdit (login required)