Electroencephalogram-Based Attention Level Classification Using Convolution Attention Memory Neural Network

Citation

Toa, Chean Khim and Sim, Kok Swee and Tan, Shing Chiang (2021) Electroencephalogram-Based Attention Level Classification Using Convolution Attention Memory Neural Network. IEEE Access, 9. pp. 58870-58881. ISSN 2169-3536

[img] Text
Electroencephalogram-Based Attention Level Classification....pdf
Restricted to Repository staff only

Download (7MB)

Abstract

Attentive learning is an important feature of the learning process. It provides a beneficial learning experience and plays a key role in generating positive learning outcomes. Most studies widely applied electroencephalogram (EEG) to measure human attention level. Although most studies use EEG handcrafted features and statistical methods to classify attention level, a more effective feature learning technique is still needed. In this paper, we aim to analyze participants’ EEG signals through a deep learning model and classify those signals as showing either attentive or inattentive behaviors. To carry out this research, we initially conducted a background study on attention and its detection in EEG. After that, we design a Troxler’s fading experiment and use an EEG device to collect data on participants’ attentive and inattentive behaviors during the test. The collected EEG data will be analyzed using a Convolution Attention Memory Neural Network (CAMNN) model to classify participants’ attention level. The proposed CAMNN model is optimized with Vector-to-Vector (Vec2Vec) modeling, where the model can be learned through deep neural networks in an end-to-end approach. The result shows that our model can achieve 92% accuracy and 0.92 F1 score which outperforms several existing neural network models such as Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Convolutional Neural Network (CNN), Deep Learning with Convolutional Neural Networks (deep ConvNets), and Compact Convolutional Network for EEG-based BCIs (EEGNet). This research can be useful for those who are interested in developing attention level monitoring or biofeedback system in areas such as educational classroom learning, medical research, and industrial operator.

Item Type: Article
Uncontrolled Keywords: Electroencephalography
Subjects: Q Science > QP Physiology
Divisions: Faculty of Engineering and Technology (FET)
Faculty of Information Science and Technology (FIST)
Depositing User: Ms Nurul Iqtiani Ahmad
Date Deposited: 28 Apr 2021 17:25
Last Modified: 24 Feb 2023 05:57
URII: http://shdl.mmu.edu.my/id/eprint/8648

Downloads

Downloads per month over past year

View ItemEdit (login required)