Detection of energy theft and defective smart meters in smart grids using linear regression

Citation

Yip, Sook Chin and Wong, Kok Sheik and Hew, Wooi Ping and Gan, Ming Tao and Phan, Raphael Chung Wei and Tan, Su Wei (2017) Detection of energy theft and defective smart meters in smart grids using linear regression. International Journal of Electrical Power & Energy Systems, 91. pp. 230-240. ISSN 0142-0615

[img] Text
1-s2.0-S0142061516316386-main.pdf
Restricted to Repository staff only

Download (1MB)

Abstract

The utility providers are estimated to lose billions of dollars annually due to energy theft. Although the implementation of smart grids offers technical and social advantages, the smart meters deployed in smart grids are susceptible to more attacks and network intrusions by energy thieves as compared to conventional mechanical meters. To mitigate non-technical losses due to electricity thefts and inaccurate smart meters readings, utility providers are leveraging on the energy consumption data collected from the advanced metering infrastructure implemented in smart grids to identify possible defective smart meters and abnormal consumers’ consumption patterns. In this paper, we design two linear regression-based algorithms to study consumers’ energy utilization behavior and evaluate their anomaly coefficients so as to combat energy theft caused by meter tampering and detect defective smart meters. Categorical variables and detection coefficients are also introduced in the model to identify the periods and locations of energy frauds as well as faulty smart meters. Simulations are conducted and the results show that the proposed algorithms can successfully detect all the fraudulent consumers and discover faulty smart meters in a neighborhood area network.

Item Type: Article
Uncontrolled Keywords: Energy theft detection, Defective meter detection, Smart Grid, Linear regression, Categorical variable
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK3001-3521 Distribution or transmission of electric power
Divisions: Faculty of Engineering (FOE)
Depositing User: Ms Suzilawati Abu Samah
Date Deposited: 30 Jul 2020 07:31
Last Modified: 29 Dec 2020 18:24
URII: http://shdl.mmu.edu.my/id/eprint/7016

Downloads

Downloads per month over past year

View ItemEdit (login required)