Citation
Lim, Zhou Yi and Ong, Lee Yeng and Leow, Meng Chew (2021) A Review on Clustering Techniques: Creating Better User Experience for Online Roadshow. Future Internet, 13 (9). p. 233. ISSN 1999-5903
Text
A Review on Clustering Techniques....pdf Restricted to Repository staff only Download (18MB) |
Abstract
Online roadshow is a relatively new concept that has higher flexibility and scalability compared to the physical roadshow. This is because online roadshow is accessible through digital devices anywhere and anytime. In a physical roadshow, organizations can measure the effectiveness of the roadshow by interacting with the customers. However, organizations cannot monitor the effectiveness of the online roadshow by using the same method. A good user experience is important to increase the advertising effects on the online roadshow website. In web usage mining, clustering can discover user access patterns from the weblog. By applying a clustering technique, the online roadshow website can be further improved to provide a better user experience. This paper presents a review of clustering techniques used in web usage mining, namely the partition-based, hierarchical, density-based, and fuzzy clustering techniques. These clustering techniques are analyzed from three perspectives: their similarity measures, the evaluation metrics used to determine the optimality of the clusters, and the functional purpose of applying the techniques to improve the user experience of the website. By applying clustering techniques in different stages of the user activities in the online roadshow website, the advertising effectiveness of the website can be enhanced in terms of its affordance, flow, and interactivity.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Web usage mining, clustering |
Subjects: | Z Bibliography. Library Science. Information Resources > ZA3038-5190 Information resources (General) > ZA4050-4775 Information in specific formats or media > ZA4050-4480 Electronic information resources |
Divisions: | Faculty of Information Science and Technology (FIST) |
Depositing User: | Ms Nurul Iqtiani Ahmad |
Date Deposited: | 05 Oct 2021 05:48 |
Last Modified: | 05 Oct 2021 05:48 |
URII: | http://shdl.mmu.edu.my/id/eprint/9613 |
Downloads
Downloads per month over past year
Edit (login required) |