Effects of triggering mechanisms on the crashworthiness characteristics of square woven jute/epoxy composite tubes

Citation

Sivagurunathan, Rubentheran and Way, Saijod Lau Tze and Sivagurunathan, Linkesvaran and Yaakob, Mohd Yuhazri (2018) Effects of triggering mechanisms on the crashworthiness characteristics of square woven jute/epoxy composite tubes. Journal of Reinforced Plastics and Composites, 37 (12). pp. 824-840. ISSN 0731-6844

Full text not available from this repository.

Abstract

The usage of composite materials has been growing widely over the years due to their excellent characteristics such as lightweight, high-energy absorption capability and corrosion resistance. In this study, the crashworthiness characteristics of square woven jute/epoxy composite tubes with different configuration of triggering mechanisms were tested and evaluated when subjected to quasi-static axial loading. The deformation morphology of each composite tube was captured by using high-resolution photography. The composite tubes were fabricated by using the combination of hand layup and compression bladder moulding techniques in which total of three layers of woven bi-directional natural jute fabric (plain weave mat) were used, each with wall thickness and length of 3 mm and 100 mm, respectively. To induce the progressive crushing of composite tubes, four different types of triggering mechanisms were used: the non-trigger, single chamfered trigger, double chamfered trigger and tulip trigger. The influence of energy absorption, crush force efficiency, peak load, mean load and load–displacement history was examined and discussed. From this study, most of the composite tubes failed in progressive manner rather than catastrophic failure. Overall, the tulip trigger configuration is considered the optimal design for crashworthy structure applications.

Item Type: Article
Uncontrolled Keywords: Composite materials, Natural fibre, trigger mechanism, quasi-static, energy absorption, crashworthiness
Subjects: T Technology > TA Engineering (General). Civil engineering (General) > TA401-492 Materials of engineering and construction. Mechanics of materials
Divisions: Faculty of Engineering and Technology (FET)
Depositing User: Ms Rosnani Abd Wahab
Date Deposited: 08 Nov 2020 15:46
Last Modified: 08 Nov 2020 15:46
URII: http://shdl.mmu.edu.my/id/eprint/7262

Downloads

Downloads per month over past year

View ItemEdit (login required)