Citation
Feng, Y. and Lim, A.T.Z. and Lu, M. and Sun, J. and Chan, K.Y. and Ghotekar, S. and Zhou, D. and Sinclair, D.C. and Tan, K.B. (2025) Synergistic A-site co-doping of (Na1/2Bi1/2)xBa1−xZn1/3Nb2/3O3 perovskites: doping mechanisms, microstructure and impedance studies. Journal of Science: Advanced Materials and Devices, 10 (3). p. 100971. ISSN 2468-2179![]() |
Text
20.pdf - Published Version Restricted to Repository staff only Download (9MB) |
Abstract
This study explores the novel synergistic co-doping of (Na1/2Bi1/2)2+ ions into the A-sites of Ba(Zn1/3Nb2/3)O3 (BZN) perovskites to optimise dielectric properties and reduce sintering temperatures. Polycrystalline (Na1/2Bi1/2)xBa1−xZn1/3Nb2/3O3 ceramics (x = 0.1–0.4) were synthesised via solid-state reaction, achieving dense microstructures with relative densities exceeding 92 %. The presence of Na0.13Bi1.87O2.87 and ZnNb2O6 transient phases facilitated a significant reduction in sintering temperature from 1200 °C (x = 0.1) to as low as 950 °C (x = 0.4). XRD, Rietveld refinement and TEM confirmed the formation of phase-pure cubic perovskites with Pm m symmetry. Dielectric studies revealed enhanced room-temperature relative permittivity (ε′) and optimised dielectric loss (tan δ), attributed to dipole polarisation induced by 6s2 lone-pair electrons of Bi3+ and improved grain size. Notably, the composition, x = 0.2 exhibited the lowest tan δ (∼0.0096 at 1 MHz) and highest electrical resistance, representing the optimal balance of dielectric performance. Impedance spectroscopy analysis revealed grain-dominated electrical processes and reduced oxygen vacancies, thereby corroborating the correlation between composition, microstructure and electrical properties. This work highlights the functionality of (Na1/2Bi1/2)2+ co-doping to enhance the dielectric performance of BZN perovskites while achieving optimal density at reduced sintering temperatures, thus rendering them suitable for applications in Low-Temperature Co-Fired ceramic (LTCC) for advanced electronic devices.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Perovskites, Phase evolution, Densification and dielectric properties |
Subjects: | Q Science > Q Science (General) |
Divisions: | Faculty of Artificial Intelligence & Engineering (FAIE) |
Depositing User: | Ms Suzilawati Abu Samah |
Date Deposited: | 27 Aug 2025 06:39 |
Last Modified: | 27 Aug 2025 06:39 |
URII: | http://shdl.mmu.edu.my/id/eprint/14485 |
Downloads
Downloads per month over past year
![]() |