Mechanical, thermal, tribological, and flammability properties of polybutylene terephthalate composites: Comparing the effects of synthetic wollastonite nanofibers, natural wollastonite, and graphene oxide

Citation

Chan, Jia Xin and Wong, Joon Fatt and Hassan, Azman and Othman, Norhayani and Abd Razak, Jeefferie and Nirmal, Umar and Hashim, Shahrir and Ching, Yern Chee and Yunos, Muhamad Zaini and Yahaya, Ridwan and Gunathilake, T. M. Sampath U. (2023) Mechanical, thermal, tribological, and flammability properties of polybutylene terephthalate composites: Comparing the effects of synthetic wollastonite nanofibers, natural wollastonite, and graphene oxide. Journal of Applied Polymer Science, 140 (6). ISSN 0021-8995

Full text not available from this repository.

Abstract

Polybutylene terephthalate (PBT) composites were prepared with 1.0 phr synthetic wollastonite nanofibers (SWN), natural wollastonite (NW) and graphene oxide (GO) to study the effect of different fillers on mechanical, thermal, tribological, and flammability properties. The properties of PBT composites are related to the size, structure, and interfacial adhesion of the fillers in PBT matrix. PBT/SWN demonstrated the highest tensile strength and Young's modulus (6% and 9% increment), followed by PBT/NW (1.3% and 7% increment) and PBT/GO (2% decrement and 4% increment). PBT/SWN gave the highest degradation temperature (409°C), followed by PBT/GO (404.7°C). The maximum enhancement in wear resistance (73%) by PBT/SWN and anti-friction performance (26%) by PBT/GO evinced the excellent load-bearing ability of SWN and the great lubricating effect of GO. PBT/NW had the lowest peak heat release rate, smoke, and carbon dioxide production rate. This study shows that PBT composites have great potential in different automotive applications.

Item Type: Article
Uncontrolled Keywords: Wollastonite, Composites
Subjects: T Technology > TN Mining engineering. Metallurgy > TN799.5-948 Nonmetallic minerals
Divisions: Faculty of Engineering and Technology (FET)
Depositing User: Ms Nurul Iqtiani Ahmad
Date Deposited: 11 Jan 2023 01:26
Last Modified: 30 Jan 2023 05:45
URII: http://shdl.mmu.edu.my/id/eprint/11053

Downloads

Downloads per month over past year

View ItemEdit (login required)