Pose-Based Gait Analysis for Diagnosis of Parkinson’s Disease


Tee, Connie and Aderinola, Timilehin B. and Ong, Thian Song and Goh, Michael Kah Ong and Erfianto, Bayu and Purnama, Bedy (2022) Pose-Based Gait Analysis for Diagnosis of Parkinson’s Disease. Algorithms, 15 (12). p. 474. ISSN 1999-4893

[img] Text
47.pdf - Published Version
Restricted to Repository staff only

Download (2MB)


Parkinson’s disease (PD) is a neurodegenerative disorder that is more common in elderly people and affects motor control, flexibility, and how easily patients adapt to their walking environments. PD is progressive in nature, and if undetected and untreated, the symptoms grow worse over time. Fortunately, PD can be detected early using gait features since the loss of motor control results in gait impairment. In general, techniques for capturing gait can be categorized as computer-vision-based or sensor-based. Sensor-based techniques are mostly used in clinical gait analysis and are regarded as the gold standard for PD detection. The main limitation of using sensor-based gait capture is the associated high cost and the technical expertise required for setup. In addition, the subjects’ consciousness of worn sensors and being actively monitored may further impact their motor function. Recent advances in computer vision have enabled the tracking of body parts in videos in a markerless motion capture scenario via human pose estimation (HPE). Although markerless motion capture has been studied in comparison with gold-standard motion-capture techniques, it is yet to be evaluated in the prediction of neurological conditions such as PD. Hence, in this study, we extract PD-discriminative gait features from raw videos of subjects and demonstrate the potential of markerless motion capture for PD prediction. First, we perform HPE on the subjects using AlphaPose. Then, we extract and analyse eight features, from which five features are systematically selected, achieving up to 93% accuracy, 96% precision, and 92% recall in arbitrary views.

Item Type: Article
Uncontrolled Keywords: Gait analysis, markerless motion capture, Parkinson’s disease
Subjects: R Medicine > RC Internal medicine > RC0321 Neuroscience. Biological psychiatry. Neuropsychiatry
Divisions: Faculty of Information Science and Technology (FIST)
Depositing User: Ms Nurul Iqtiani Ahmad
Date Deposited: 15 Mar 2023 04:26
Last Modified: 15 Mar 2023 04:26
URII: http://shdl.mmu.edu.my/id/eprint/11233


Downloads per month over past year

View ItemEdit (login required)