Symmetric Engineered High Polarization-Insensitive Double Negative Metamaterial Reflector for Gain and Directivity Enhancement of Sub-6 GHz 5G Antenna

Citation

Hasan, Md. Mhedi and Islam, Mohammad Tariqul and Moniruzzaman, Md. and Soliman, Mohamed S. and Alshammari, Ahmed S. and Sulayman, Iman I. M. Abu and Samsuzzaman, Md. and Islam, Md. Shabiul (2022) Symmetric Engineered High Polarization-Insensitive Double Negative Metamaterial Reflector for Gain and Directivity Enhancement of Sub-6 GHz 5G Antenna. Materials, 15 (16). p. 5676. ISSN 1996-1944

[img] Text
materials-15-05676.pdf - Published Version
Restricted to Repository staff only

Download (8MB)

Abstract

A symmetric engineered high polarization-insensitive double negative (DNG) metamaterial (MM) reflector with frequency tunable features for fifth-generation (5G) antenna gain and directivity enhancement is proposed in this paper. Four identical unique quartiles connected by a metal strip are introduced in this symmetric resonator that substantially tunes the resonance frequency. The proposed design is distinguished by its unique symmetric architecture, high polarization insensitivity, DNG, and frequency tunable features while retaining a high effective medium ratio (EMR). Moreover, the suggested patch offers excellent reflectance in the antenna system for enhancing the antenna gain and directivity. The MM is designed on a Rogers RO3010 low loss substrate, covering the 5G sub-6GHz band with near-zero permeability and refractive index. The performance of the proposed MM is investigated using Computer Simulation Technology (CST), Advanced Design Software (ADS), and measurements. Furthermore, polarization insensitivity is investigated up to 180° angles of incidence, confirming the identical response. The 4 × 4 array of the MM has been utilized on the backside of the 5G antenna as a reflector, generating additional resonances that enhance the antenna gain and directivity by 1.5 and 1.84 dBi, respectively. Thus, the proposed prototype outperforms recent relevant studies, demonstrating its suitability for enhancing antenna gain and directivity in the 5G network.

Item Type: Article
Uncontrolled Keywords: Metamaterial, high polarization-insensitive, symmetric structure, double negative, reflector, gain enhancement
Subjects: T Technology > TK Electrical engineering. Electronics Nuclear engineering > TK5101-6720 Telecommunication. Including telegraphy, telephone, radio, radar, television
Divisions: Faculty of Engineering (FOE)
Depositing User: Ms Nurul Iqtiani Ahmad
Date Deposited: 07 Oct 2022 03:18
Last Modified: 07 Oct 2022 03:18
URII: http://shdl.mmu.edu.my/id/eprint/10516

Downloads

Downloads per month over past year

View ItemEdit (login required)