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a b s t r a c t 

In this paper, we propose a hand tracking method which was inspired by the notion of the four dukkha: 

birth, aging, sickness and death (BASD) in Buddhism. Based on this philosophy, we formalize the hand 

tracking problem in the BASD framework, and apply it to hand track hand gestures in isolated sign lan- 

guage videos. The proposed BASD method is a novel nature-inspired computational intelligence method 

which is able to handle complex real-world tracking problem. The proposed BASD framework operates 

in a manner similar to a standard state-space model, but maintains multiple hypotheses and integrates 

hypothesis update and propagation mechanisms that resemble the effect of BASD. The survival of the 

hypothesis relies upon the strength, aging and sickness of existing hypotheses, and new hypotheses are 

birthed by the fittest pairs of parent hypotheses. These properties resolve the sample impoverishment 

problem of the particle filter. The estimated hand trajectories show promising results for the American 

sign language. 

© 2017 Elsevier B.V. All rights reserved. 
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. Introduction 

Hand tracking is one of the challenging tasks in computer vi-

ion that aims to estimate the continuous hand motion in hand

esture video. Hand tracking is important in many applications,

ncluding human-computer interaction, human behaviour analysis

nd hand gesture recognition. In this work, hand tracking in sign

anguage recognition is considered. 

Sign language is a visual communication means used by hearing

mpaired community to communicate. In real world, there are lim-

ted hearing people who are able to communicate in sign language.

n view of this, researchers have been developing sign recogni-

ion systems to bridge the communication gap between the hear-

ng and hearing impaired communities. Generally, sign language

ecognition can be categorized into isolated sign recognition and

ontinuous sign recognition. A sign comprises hand motion and

and shapes (manual components), as well as facial expressions,

ead motion and body postures (non-manual components). Prior

o recognizing the hand gesture, a sign language recognition sys-

em must be able to locate the hands. In this work, we focus on

and tracking of isolated sign gestures using only the manual com-

onents. 
∗ Corresponding author. 
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Hand movement is an important cue in sign language recog-

ition. In the context of an automated sign language recognition

ystem, a sign may span several image frames within a gesture

ideo. For that reason, a state-space model hand tracking method

nspired by the birth, aging, sickness and death (BASD) life cy-

le is proposed and depicted in Fig. 1 . Unlike most other state-

pace model, the proposed BASD state-space hand tracking method

aintains multiple hypotheses whereby each hypothesis models

he hand location, velocity and age. In the BASD model, each hy-

othesis goes through the process of birth, aging, sickness and

eath. The mean of top tier of the fittest surviving hypothesis is

he estimated target hand location. The novelties of the proposed

ethod are: 

• A novel nature-inspired computational intelligence method to

address complex real-world tracking problem. 
• Hypotheses which are unfit (due to aging or sickness) undergo

culling where hypotheses with low fitness score are eliminated.
• New hypothesis will be established by surviving (parent) hy-

potheses to overcome the sample impoverishment problem. 

The paper is organized as follows: Initially, a review of state-of-

he-art hand tracking methods in isolated sign language recogni-

ion is provided in Section 2 . Subsequently, the details of the pro-

osed BASD hand tracker are described in Section 3 . Experiments

nd discussions are then reported in Section 4 . In the same sec-

ion, the database used in the experiments and the performance

valuation are discussed. Finally, conclusion is drawn in Section 5 . 

http://dx.doi.org/10.1016/j.neucom.2017.06.012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
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mailto:kmlim@mmu.edu.my
mailto:wctan@mmu.edu.my
mailto:sctan@mmu.edu.my
http://dx.doi.org/10.1016/j.neucom.2017.06.012


312 K.M. Lim et al. / Neurocomputing 267 (2017) 311–319 

Fig. 1. Overview of proposed BASD hand tracking. 
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2. Related work 

A variety of methods have been researched to extract the fea-

tures for sign language recognition. Almost all began by detecting

the location of hands via hand tracking approaches and many such

hand trackers utilize human skin color as it is unique in compar-

ison to the other colors. For example, Chen et al. [1] proposed a

fusion of skin color detection, edge detection and motion detection

by logical AND operation in their hand tracking algorithm. A skin

color distribution is used to segment the hand based on the L ∗a ∗b

color model [2] . In [3] , Zhang and Huang combined skin color and

super pixel information to extract the hand region. Even though

skin color is easy to differentiate, hand tracking solely based on

this feature may fail due to other exposed body parts (e.g. face or

the arms) having the same skin color. 

Inspired by the success of state-space methods in visual track-

ing tasks, researchers have begun to apply it to hand tracking.

For example, Gaus and Wong [4] employed Kalman Filter to de-

tect hand to head and hand to hand occlusion regions. Park et al.

[5] utilized a depth sensor and performed hand tracking using

Kalman Filter. Shan et al. [6] adopted the mean shift embedded

particle filter as a non-linear posterior density estimator for real

time hand tracking. Belgacem et al. [7] likewise embedded optical

flow as a penalisation method into particle filter for sign language

recognition. Campr et al. [8] used joint particle filter to calculate a

combined likelihood model of hands and head. Morshidi and Tjah-

jadi [9] presented a hand tracking method based on gravity opti-

mized particle filter. The literature demonstrates that particle fil-

ter is well-suited to hand tracking applications, given its capability

to model non-linear probability distribution, although the perfor-
ance is highly dependent on suitably chosen dynamic and obser-

ation models. 

Apart from state-space methods, some other well-known vi-

ual tracking methods were also considered for hand tracking. Jang

t al. [10] proposed hand tracking in depth images by comput-

ng a hand weighted depth probability. They employed continu-

us adaptive mean shift (CAMSHIFT) algorithm as their tracking

rocedure. Yoo et al. [11] likewise used CAMSHIFT to track hands

n their interactive large-scale display system. Kolsch and Turk

12] introduced KLT feature tracking based hand tracker and the

ethod performed well in unconstrained indoor and outdoor en-

ironments. Chen et al. [13] extended the work by using the KLT

racking to efficiently update the search window of an improved

AMSHIFT tracking method. Elsewhere, Chen et al. [14] applied a

egion growing technique to segment the hand region in depth im-

ges and used mean-shift algorithm to track the hand region. Park

t al. [15] extracted the candidate hand regions from depth im-

ges and chose the best candidate based on the color and shape

eature. Then, a boundary tracking method based on Generalized

ough Transform was proposed to track the hand. A recent work

y Kishore et al. [16] detected the hand position using optical flow

ethod. Active contour shape features were extracted and input to

 fuzzy inference engine for recognition. 

Recent researches also focus on color and depth information

cquired using RGB-D sensors. Jangyodsuk et al. [17] proposed to

tilize Histograms of Oriented Gradients (HOG) for hand shape

epresentation and applied Dynamic Time Warping (DTW) to per-

orm sign language recognition using Kinect sensor. Zhang et al.

18] used Histogram of Oriented Displacement to describe the

and trajectories, and multi-SVM for classification on the sign
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Fig. 2. Sickness function. 
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anguage recorded using Microsoft Kinect. Likewise, Sun et al.

19] collected an American Sign Language dataset using Microsoft

inect sensor. In their work, HOG and optic flow features were

mployed to represent the hand appearance and motion informa-

ion. Additionally, several features obtained from Kinect such as

ody pose, hand shape, and hand motion were also utilized. Then,

 latent support vector machine model was proposed to classify

he signs based on both color image and depth map captured by

he sensor. A similar work by Liu et al. [20] employed Microsoft

inect sensor to collect Chinese Sign Language dataset. Four skele-

on joints were used as the input to a long short-term memory

rchitecture for recognition. Despite additional depth information,

he RGB-D sensors are less cost effective. For this reason, this work

urns to a publicly available dataset recorded using less expensive

ntensity camera. 

. Proposed BASD hand tracker 

Dukkha (suffering) is the first noble truths introduced by Bud-

ha in his first sermon. Birth, aging, sickness and death (BASD) are

niversal sufferings, as are sorrow, grief, despair, separation and

naccomplished desires. These sufferings are the inevitable cycle of

he human life. Some people who come across this teaching may

onsider it pessimistic. However, Buddhists consider that as neither

ptimistic nor pessimistic, but realistic. The Buddha’s teachings are

ot just about sufferings; rather, the teachings go on to advise us

n how we can eradicate it. Interested readers are referred to Ref.

21] for more information on the subject. 

As soon as we are born into the world, we grow, and in the

rocess of growing, we learn from our environment and experi-

nces. However, due to our unique genetic makeup and circum-

tances, the fitness of our body (or health conditions) are different.

ome are strong while others are weak. Some easily become sick

hile others are healthier and possibly live a longer life. Inspired

y these facts, we propose a tracking method to emulate the effect

f BASD, and apply it to track the hand gestures in isolated sign

anguage videos. 

.1. Hypothesis update 

The proposed BASD hand tracker is a state space model that

aintains multiple hypotheses. Each hypothesis is represented as a

tate vector. Specifically, let the state vector x n t = [ x n t y n t u n t v n t a n t ] 
T 

e the n th hypothesis in the t th frame containing the location co-

rdinates (x n t , y 
n 
t ) , and velocities (u n t , v n t ) , where u n t and v n t repre-

ent the velocity in the x -direction and y -direction, respectively,

nd a n t is the age associated with the hypothesis. We model the

esture motion as a hypothesis update, given by 

 

n 
t = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

x n t 

y n t 

u 

n 
t 

v n t 

a n t 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎣ 

1 0 1 0 0 

0 1 0 1 0 

0 0 1 0 0 

0 0 0 1 0 

0 0 0 0 1 

⎤ 

⎥ ⎥ ⎦ 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

x n t−1 

y n t−1 

u 

n 
t−1 

v n t−1 

a n t−1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

+ 

⎡ 

⎢ ⎢ ⎣ 

n x 

n y 

n u 

n v 
1 

⎤ 

⎥ ⎥ ⎦ 

= f (x t−1 ) + n t , 
t =1 , 2 , ... , T 
n =1 , 2 , ... , N (1) 

here N is the number of hypothesis, T is the number of frames

n the video, n x , n y ∼ N(0 , σ 2 
xy ) and n u , n v ∼ N(0 , σ 2 

u v ) are the noise

erms, and σ 2 
xy and σ 2 

u v are the noise variance of displacement and

elocity, respectively. The age of a new hypothesis, a n t , is assigned

he value 1, and thereafter incremented by 1 from one frame to

he next. 

.2. Hypothesis propagation 

To evaluate the fitness of a hypothesis, we define a fitness func-

ion. Fitness of human relates to the health condition and strongly
orrelates with the age. By the same token, the fitness of a hypoth-

sis is related to its age. Let the aging function of a hypothesis be

efined as 

ging(x 

n 
t ) = γ − a n t 

T 
(2) 

here γ is a constant slightly greater than 1 so that a younger

ypothesis is deemed as fitter than an older one. In a human life

ycle, the two periods in which one is more prone to sickness are

uring infancy and old age. Therefore, to evaluate the health of a

ypothesis, we model the sickness function as a trapezoidal shaped

unction of age. The sickness function is defined as 

ickness (x 

n 
t ; a, b, c, d) = max 

(
min 

( a n t 

T 
− a 

b − a 
, 1 , 

d − a n t 

T 

d − c 

)
, 0 

)
(3)

here a, b, c, d are four scalar parameters that determine the

rapezoidal shape. The sickness function is depicted in Fig. 2 ,

here the x -axis represents the value of a n t /T and the y -axis rep-

esents the fitness of a hypothesis with regards to its age. 

In addition to aging and sickness, the fitness of a hypothesis in

he proposed BASD hand tracker also considers the strength of the

ypothesis. To evaluate the strength of the hypothesis, we make

he assumption that, if the hypothesis is located near the hand,

hen it is strong; otherwise, it is weak. Therefore, hand detection

s needed in order to examine whether a hypothesis is located near

he hand. 

In sign language, when a signer performs a sign gesture, the

ead of the signer may move even more than the hands, thereby

dversely affecting the performance of hand tracking. To overcome

his, we apply the Viola and Jones [22] face detection algorithm to

ocate, and thereafter, remove the face region of the signer prior to

urther processing. 

To detect the hand, we apply the background subtraction

ethod in our previous work [23] . In statistics, the median is the

umerical value separating the higher half of the data sample from

he lower half. The median, as compared to the mean, is a mea-

ure that is especially robust in the presence of outlier in video

rocessing. The mode, on the other hand, is the most common

alue in the data sample. In the context of background detection,

he assumption that moving objects (the hands) are not always lo-

ated at the same point is made. Thus, a fusion of the median

nd mode filters for background detection is employed. Specifically,

he average of the median and mode of every pixel of the im-

ge sequence in modelling the background image is computed. The
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Fig. 3. Comparison of background subtraction using median, mode and average of two. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 1 BASD Hand Tracker. 

1: Initialization: { (x n 
1 
, z n 

1 
) } N 

n =1 
2: for t = 2 : T do 

3: for n = 1 : N do 

4: Hypothesis update: x n t = f (x n 
t−1 

) (refer to (1)) 

5: Fitness evaluation: 

6: z n t = strength (x n t ) × aging(x n t ) × sickness (x n t ; a, b, c, d) 

7: (refer to (6)) 

8: end for 

9: State estimation: j% of the f ittest hypotheses → 

ˆ x t (refer to 

(9)) 

10: Death: k % of hypotheses with lowest f itness score die 

11: Birth: 

12: Surv i v ing parent hypotheses x t → x t ∪ x ∗t (refer to (8)) 

13: end for 

A  

a  
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t  

r  
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h  
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difference between the background image and the original image

above a preset threshold produces the foreground image, which

corresponds to regions where the hands are located. In the ex-

periments, it is clear that the combination of these two statistical

measures produces the best result, as illustrated in Fig. 3 . After the

foreground sign language sequences are obtained, the absolute dif-

ference of every two subsequent frames is computed to obtain the

hand motion region. 

After the hand motion region is detected, and based on the esti-

mated location (x n t , y 
n 
t ) of the state vector x n t , an image patch P of

the size r × r centered at this location is extracted. The fitness of

a hypothesis with regards to its strength is based on the summed

and normalized intensity values I of all pixels in P, which is com-

puted as 

h (x 

n 
t ) = 

∑ 

x,y ∈P I(x, y ) 

r 2 
(4)

In addition, we also take into account the strength of a hypothesis

from the previous iteration, i.e., 

strength (x 

n 
t ) = α × h (x 

n 
t ) + ( 1 − α) × h (x 

n 
t−1 ) (5)

where 0 < α < 1 is the weightage parameter. Finally, combining

the aging, sickness and strength functions, we define the overall

fitness of a hypothesis as 

z n t = f itness (x 

n 
t ) 

= strength (x 

n 
t ) × aging(x 

n 
t ) × sickness (x 

n 
t ; a, b, c, d) (6)

In each iteration, k % of the hypotheses with the lowest fitness

score will be eliminated. The birth of a new hypothesis begins with

the identification of the candidate parent hypotheses. To that end,

we identify the nearest m pairs of the surviving parent hypotheses

by computing the pairwise distance as 

d(x 

n 
t , x 

n ′ 
t ) = 

√ 

(x n t − x n 
′ 

t ) 
2 + (y n t − y n 

′ 
t ) 

2 , n, n 

′ = 1 , . . . , N (7)

For each of the m pairs of hypotheses, a number of new hypotheses

are birthed at the midpoint of the parents (x 
p 
t , x 

q 
t ) , i.e., 

Newhypothesis, x 

∗
t = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

x p t + x q t 

2 

y p t + y q t 

2 

u 

p 
t + u 

q 
t 

2 

v p t + v q t 

2 

1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(8)
h

t the end of this stage, the total number of hypothesis (parents

nd children) will be the same as before. Algorithm 1 outlines the

roposed BASD hand tracking algorithm. 

At the initialization stage of the algorithm, the initial motion

f foreground objects are obtained by finding the absolute differ-

nce of the first two frames, and Otsu [24] method is employed

o binarize the frame difference. The connected components in the

inary image are then acquired and sorted in descending order of

he area. The centroid with the largest area in the sorted list rep-

esents the initial location of the hands. Then, the initial location

oordinates x n 
1 

of hypothesis n corresponding to the first frame are

et at this centroid and equal weights z n 
1 

= 1 /N are assigned to all

ypotheses. 

In the subsequent frames ( t = 2 , 3 , . . . , T ), all hypotheses step

hrough the algorithm in four main stages, namely hypothesis up-

ate, fitness evaluation, estimation and death/birth. The final esti-

ated state ˆ x t in each time step is computed as 

ˆ 
 t = 

∑ 

n ∈ S x 

n 
t z 

n 
t (9)

here S is the set that represents the top j % highest fitness score

ypotheses. 

In this work, the BASD hand tracker is proposed to track both

ands sequentially. Algorithm 1 is first performed to track the right

and. After the location of the right hand in all frames have been

btained, the right hand region is filled with black pixels. Subse-

uently, Algorithm 1 is repeated to acquire the location of the left

and. 
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Table 1 

List of isolated ASL. 

Database Isolated signs 

RWTH-BOSTON-50 ariv1, bdown, box, futue, have, house, movie, pepol, 

toy, book, frend, hmwrk, give, leg, write 

4
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. Experiments and discussions 

To evaluate the performance of the proposed BASD hand tracker

n isolated sign language recognition, experiments are carried out

n the RWTH-BOSTON-50 database by Zahedi et al. [25] , which is

ublished by The National Center for Sign Language and Gesture

esources of the Boston University. This database contains 50 iso-

ated American Sign Language and the videos were recorded at 30

rames per second with dimension of 312 × 214 pixel. In this work,

nly the videos acquired by the front camera are used. Table 1

numerates the isolated sign labels considered in the experiments.

In this work, the objects that we intend to track are the right

nd left hands. We formulate the problem sequentially instead of

racking both hands concurrently. For comparison, we compare the

roposed BASD Hand Tracker’s performances with recent state-of-

he-art trackers using the same initial position of the target: In-
Fig. 4. COL errors for pa
remental Visual Tracker (IVT) [26] , Sparse Prototypes Tracker (SP)

27] , Consistent Low-rank Sparse Tracker (LRT) [28] , and Serial Par-

icle Filter (SPF) [23] . Particle filter has been extensively used in

any object tracking works [6,29,30,31,32,33] . A particle filter is

escribed by two state equations, which are the dynamic model

nd observation model. IVT utilizes a novel incremental PCA ap-

roach to learn an updatable subspace representation online gen-

ratively, whereas SP introduces sparsity and trivial templates into

enerative PCA subspace learning to explicitly handle occlusion

nd motion blur. LRT formulates tracking problem as searching for

he best image regions which are similar to the tracked targets by

ntroducing sparse linear representation. SPF utilizes (1) as the dy-

amic model and (4) as the observation model for the particle fil-

er. 

All the experiments are executed in Matlab R2015a on the same

achine with Intel(R) Xeon(R) E3-1231 processor. Before starting

ut on the actual experiments, the choice of the free parame-

ers needs to be determined. The optimal value for the free pa-

ameters is determined based on the average COL errors. Keeping

ll other parameters constant, analyses are made by varying the

alue of these parameters. The parameter tuning is examined in a

rid search in a promising range, as depicted in Fig. 4 . Choosing a

roper γ is important in characterizing the age function. γ is set
rameters setting. 



316 K.M. Lim et al. / Neurocomputing 267 (2017) 311–319 

Table 2 

Parameter setting. 

Parameter Description Default value 

γ Age constant 1.2 

( a, b, c, d ) Scalar parameters of the trapezoidal shaped health function (0,0.2,0.7,1) 

α Weightage parameter 0.8 

j Percentage of fittest hypotheses that is used for state estimation at 

each iteration 

10 

k Percentage of least fit hypotheses that are removed at each iteration 90 

r Image patch size 70 

N Number of hypothesis 100 

σ 2 
xy Noise variance of displacement 100 

σ 2 
u v Noise variance of velocity 25 

Table 3 

Comparison of TER for right hand. 

Isolated sign Methods 

BASD IVT SP LRT SPF 

τ= 10 τ= 15 τ= 20 τ= 10 τ= 15 τ= 20 τ= 10 τ= 15 τ= 20 τ= 10 τ= 15 τ= 20 τ= 10 τ= 15 τ= 20 

ariv1 22.22 11.11 0.00 4 4.4 4 4 4.4 4 4 4.4 4 4 4.4 4 33.33 33.33 88.89 77.78 55.56 4 4.4 4 22.22 0.00 

bdown 42.86 28.57 14.29 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 28.57 28.57 21.43 

box 72.73 18.18 9.09 63.64 63.64 63.64 63.64 63.64 63.64 90.91 90.91 90.91 90.91 63.64 54.55 

futue 87.50 87.50 81.25 0.00 0.00 0.00 6.25 0.00 0.00 93.75 93.75 87.50 56.25 31.25 12.50 

have 25.00 0.00 0.00 62.50 0.00 0.00 62.50 0.00 0.00 10 0.0 0 87.50 50.00 75.00 50.00 50.00 

house 80.00 70.00 50.00 65.00 60.00 55.00 70.00 60.00 55.00 95.00 95.00 95.00 75.00 70.00 60.00 

movie 25.00 25.00 0.00 10 0.0 0 10 0.0 0 25.00 10 0.0 0 10 0.0 0 25.00 10 0.0 0 10 0.0 0 75.00 50.00 0.00 0.00 

pepol 63.64 45.45 18.18 0.00 0.00 0.00 0.00 0.00 0.00 90.91 81.82 63.64 54.55 54.55 54.55 

toy 28.57 0.00 0.00 10 0.0 0 28.57 14.29 10 0.0 0 28.57 14.29 10 0.0 0 85.71 85.71 71.43 14.29 0.00 

book 87.50 87.50 25.00 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 87.50 37.50 

frend 70.59 47.06 47.06 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 76.47 41.18 41.18 

hmwrk 53.85 15.38 7.69 69.23 53.85 30.77 69.23 69.23 69.23 92.31 92.31 92.31 38.46 23.08 0.00 

give 76.92 69.23 50.00 57.69 57.69 50.00 69.23 46.15 38.46 96.15 96.15 92.31 92.31 76.92 53.85 

leg 80.00 36.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 92.00 80.00 68.00 36.00 28.00 28.00 

write 68.00 44.00 20.00 96.00 96.00 96.00 80.00 60.00 36.00 96.00 96.00 96.00 48.00 16.00 8.00 

Average 58.96 39.00 21.50 63.90 53.61 45.28 64.35 50.73 42.33 95.73 91.80 83.46 62.49 40.48 28.10 
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to a value slightly greater than 1 to demonstrate that a younger

hypothesis is fitter than an older one. Similarly, α is a value to de-

termine the strength combination of a hypothesis in the current

and previous iteration. a, b, c, d are the four scalar parameters of

the trapezoidal shape function that determines the sickness of a

hypothesis. In particular, a, d represent the start and end of the

hypothesis, whereas b, c represent infancy and old age in the life

cycle of the hypothesis. The optimal setting of the parameters in

the proposed method is listed in Table 2 . 

To evaluate the hand tracking methods in a comprehensive way,

two evaluation methods are considered, namely quantitative evalu-

ation and qualitative evaluation. The same evaluation methods are

used by many object tracking researches [34,35] . The trackers are

evaluated quantitatively both in terms of Tracking Error Rate (TER)

proposed by Dreuw et al. [36] , and a generic Center-of-location

(COL) error. Let g t denotes the annotated groundtruth hand posi-

tions of t th frame, and τ is the threshold. The TER is given by: 

T ER = 

1 

T 

T ∑ 

t=1 

δτ (g t , x t ) with 

δτ (g , x ) = 

{
0 if ‖ g − x ‖ < τ

1 otherwise 
(10)

COL error calculates the Euclidean distance in pixels between

the centre of the tracked hand patches and the centre of the

groundtruth hand patches. For qualitative evaluation, some illus-

trated tracking results are shown and analyzed. The trajectories ob-

tained by the proposed BASD, IVT, SP, LRT and SPF are compared

to the groundtruth trajectory which was acquired by visual inspec-

tion. 
TER is employed to measure the distance for both hands of all

rackers to the groundtruth for τ = 10 , 15 , 20 . The results of both

ands are shown in Table 3 and Table 4 , respectively. Additionally,

ables 5 and 6 show the results in terms of COL error for both

ands. From the experimental results, it is notable that BASD per-

orms better than IVT, SP, LRT and SPF. Among the set of methods

ested, BASD method achieves the lowest COL errors. 

The hand tracking execution time which measured in num-

er of frame per second of all methods is presented in Table 7 .

he particle filter based methods, i.e., IVT, SP, and LRT consume

igher execution time by about 6 fps to 7 fps. The execution

ime of proposed BASD method is slightly lower than particle fil-

er based methods. The computation time of particle filter based

ethods and BASD is highly dependent on the number of par-

icle/hypothesis and the complexity of the observational model.

VT, SP and LRT consume more computational time due to their

omplex update model for the tracked object. On average, BASD

chieves either the best or second best performance in most iso-

ated signs. Therefore, we conclude that the trajectories obtained

y BASD are relatively closer to the groundtruth trajectories, and

ence, demonstrates that BASD can better detect the trajectory of

he hands. 

Additionally, we also evaluate the hand tracking qualitatively.

e choose a number of isolated signs for visual inspection. Fig. 5

hows the tracking result of isolated signs ariv1, bdown, hmwrk, toy

nd write . Noticeably, the proposed BASD method performs bet-

er than IVT, SP, LRT and SPF in all test cases. The performance of

PF highly depends on its two state equations, and all candidates

n SPF are resampled at every iteration. In contrast, BASD mimics

he life cycle of human and updates and enhances the hypothesis

t every iteration based on its fitness which is, in turn, affected
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Table 4 

Comparison of TER for left hand. 

Isolated sign Methods 

BASD IVT SP LRT SPF 

t = 10 t = 15 t = 20 t = 10 t = 15 t = 20 t = 10 t = 15 t = 20 t = 10 t = 15 t = 20 t = 10 t = 15 t = 20 

ariv1 55.56 4 4.4 4 11.11 66.67 55.56 4 4.4 4 66.67 55.56 4 4.4 4 10 0.0 0 88.89 88.89 66.67 4 4.4 4 33.33 

bdown 78.57 42.86 28.57 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 64.29 50.00 

box 72.73 54.55 27.27 72.73 72.73 72.73 72.73 72.73 72.73 90.91 90.91 90.91 81.82 63.64 27.27 

futue 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 81.25 93.75 93.75 93.75 75.00 56.25 31.25 

have 25.00 12.50 12.50 0.00 0.00 0.00 0.00 0.00 0.00 87.50 87.50 87.50 37.50 25.00 12.50 

house 90.00 85.00 85.00 80.00 70.00 60.00 80.00 70.00 60.00 95.00 95.00 95.00 95.00 65.00 50.00 

movie 75.00 50.00 0.00 50.00 0.00 0.00 50.00 0.00 0.00 75.00 75.00 75.00 0.00 0.00 0.00 

pepol 36.36 18.18 9.09 27.27 9.09 0.00 18.18 9.09 0.00 90.91 90.91 90.91 72.73 54.55 54.55 

toy 14.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 85.71 85.71 85.71 42.86 14.29 0.00 

book 10 0.0 0 87.50 50.00 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 62.50 

frend 94.12 88.24 82.35 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 

hmwrk 76.92 76.92 53.85 15.38 7.69 7.69 7.69 0.00 0.00 10 0.0 0 92.31 92.31 92.31 46.15 38.46 

give 65.38 50.00 23.08 88.46 84.62 80.77 88.46 84.62 80.77 96.15 96.15 96.15 73.08 73.08 69.23 

leg 10 0.0 0 80.00 60.00 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 10 0.0 0 

write 92.00 80.00 60.00 96.00 92.00 88.00 92.00 92.00 92.00 96.00 96.00 96.00 84.00 72.00 60.00 

Average 70.48 56.76 38.94 65.18 58.20 55.66 63.80 57.68 55.41 94.06 92.81 92.81 74.73 58.58 45.94 

Table 5 

COL errors in pixels of RWTH-Boston-50 right hand. 

RWTH-BOSTON-50 BASD IVT SP LRT SPF 

ariv1 5.00 4.87 4.92 35.66 5.86 

bdown 9.55 28.84 29.09 86.63 9.28 

box 5.48 50.96 51.27 114.70 6.21 

futue 2.39 4.01 3.84 68.12 8.78 

have 9.21 9.31 9.31 48.34 17.71 

house 3.70 22.10 22.51 98.84 14.39 

movie 11.41 14.06 14.06 96.92 3.80 

pepol 4.20 3.13 2.80 74.43 4.46 

toy 81.54 12.66 13.07 61.81 81.90 

book 11.92 34.75 34.75 109.43 11.03 

frend 7.07 48.13 48.23 22.11 23.03 

hmwrk 9.02 14.95 13.78 105.01 9.63 

give 7.30 26.33 29.29 52.60 17.04 

leg 2.58 4.67 5.24 75.93 4.74 

write 4.07 41.14 41.48 119.94 7.55 

Average 11.63 21.33 21.58 78.03 15.03 

Table 6 

COL errors in pixels of RWTH-Boston-50 left hand. 

RWTH-BOSTON-50 BASD IVT SP LRT SPF 

ariv1 10.73 17.99 15.07 52.93 11.88 

bdown 9.99 50.03 49.60 152.92 17.40 

box 11.33 47.89 47.79 222.08 9.94 

futue 4.60 45.52 45.34 91.23 5.26 

have 2.62 5.18 4.92 126.30 6.38 

house 9.05 25.54 27.92 137.93 33.62 

movie 35.18 6.51 6.32 92.23 13.79 

pepol 6.60 7.32 7.14 166.84 5.78 

toy 3.87 5.55 5.57 164.53 4.13 

book 25.93 31.58 30.84 128.35 28.74 

frend 50.85 41.87 41.69 85.12 33.90 

hmwrk 6.82 34.18 33.71 94.07 12.57 

give 40.12 56.18 43.02 94.73 31.83 

leg 6.21 68.28 68.78 66.10 23.88 

write 20.90 24.86 23.27 123.29 21.27 

Average 16.32 31.23 30.07 119.91 17.36 

Table 7 

The execution time of hand tracking in number of frame per sec- 

ond (fps). 

Method BASD IVT SP LRT SPF 

Execution time (fps) 7.64 6.50 6.30 5.70 31.50 

b  

t  

h  

a

5

 

d  
y the strength and age of the hypothesis. As for IVT, SP and LRT,

hey perform poorly because their performance highly depends on

olistic representations of the first frame and they are not robust

gainst partial occlusion. 

. Conclusion 

In this paper, a hand tracking framework inspired by the four

ukkha (birth, aging, sickness and death) in Buddha’s teaching is
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Fig. 5. Tracking results of (a) ariv1 , (b) bdown , (c) hmwrk , (d) toy and (e) write . 
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proposed. The proposed BASD hand tracking framework resembles

a standard state-space model, but maintains multiple hypothe-

ses. Hypothesis update and propagation mechanisms that adopt

the idea of BASD is incorporated into the proposed hand tracking

framework. Hand motion in sign language video is first modelled

using a hypothesis update function. The hypothesis is then evalu-

ated by a fitness function which is computed based on the aging,

sickness and strength of the hypothesis. Hypotheses with low fit-

ness score are eliminated, and new hypotheses are birthed at the
idpoint of the surviving parent hypotheses. From the experimen-

al results, the proposed BASD hand tracker is able to track the

ands accurately and promising results are obtained. 
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