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ABSTRACT In the pursuit of sustainable and efficient energy solutions, Photovoltaic (PV) systems have
emerged as a prominent player in the domain of renewable energy generation. Particularly, grid-tied PV
systems have gained substantial attention due to their potential to contribute to stability and reliability of
existing power grid infrastructure. Accordingly, an innovative approach to enhance grid supply using PV
systems with Machine Learning Strategy is proposed in this research. The primary objective is to optimize
voltage output from PV system while concurrently maximizing power using a novel Modified Zeta-Cuk
converter, coupled with Hybrid Maximum Power Point Tracking (MPPT) algorithm combining Incremental
Conductance and Bat OptimizationAlgorithm (InC-BOA). The stabilizedDC link resulting from this process
is directed to a 3-phase Voltage Source Inverter (VSI) to facilitate conversion of DC supply to AC. To further
improve the efficiency and accuracy of system, current produced by inverter is subjected to Discrete Wavelet
Transform (DWT) analysis followed by Principal Component Analysis (PCA) for feature extraction. The
final step involves implementation of Recurrent Neural Network (RNN) controller, enabling the generation
of a refined reference current. The generated reference current is then compared with actual current using
Hysteresis Current Controller (HCC). This comparison yields an output which is subsequently employed
to Pulse Width Modulation (PWM) generator facilitating the achievement of effective grid synchronization,
enhancing overall performance and stability of the system. The validation is performed using MATLAB
Simulink software and the outcomes reveals the dominance of proposed work.

INDEX TERMS PV system, InC-BOA MPPT algorithm, modified zeta-cuk converter, machine learning,
DWT, PCA, RNN controller, HCC.

I. INTRODUCTION
In recent years, the global community’s increasing concern
about environmental sustainability and the imperative to
address climate change have driven a significant shift towards
embracing RESs [1], [2]. In this scenario, PV systems have
taken center stage as a highly promising technology for
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harnessing the sun’s abundant energy. PV systems directly
convert sunlight into electricity, making them a key com-
ponent in transition towards cleaner and more sustainable
energy generation [3], [4], [5]. Among various PV system
configurations, grid-tied PV systems have gained substantial
attention due to their potential to revolutionize energy pro-
duction and distribution [6]. These systems are designed to be
flawlessly integrated into existing power grid infrastructure,
enabling them to not only generate clean energy but also

138820

 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 13, 2025



V. R. Kota et al.: Grid Integration of PV Systems With Advanced Control and Machine Learning Strategies

contribute to the stability and reliability of overall grid [7],
[8]. In response to this pressing need, this research intro-
duces an innovative approach that leverages advanced control
strategies and state-of-the-art machine learning techniques to
optimize the performance of grid-tied PV systems.

To achieve overarching objective of optimizing the perfor-
mance of grid-tied photovoltaic PV systems, power electronic
converter [9] serves as a pivotal element designed to enhance
energy conversion efficiency and ensure seamless integra-
tion of PV systems with existing power grid infrastructure.
Conventional DC-DC [10], [11], [12] converters suffer from
limited voltage range, inefficiency at light loads, switching
losses and reliability while lacking adaptability to varying
conditions. As a result, modified converters are developed
to address the limitations of conventional converters and
to improve specific aspects of their performance. In [13]
modified Buck-Boost converter is proposed, which main-
tains both voltage step/down process. However, additional
stages is required to achieve quadratic Buck-Boost voltage
transformation. The interleaved Landsman converter of [14]
improves power quality with reduced current ripple and har-
monics. Nevertheless, it include increased complexity from
interleaving and potential limitations for high-power applica-
tions. In [15] modified Single-Ended Primary-Inductor Con-
verter (SEPIC) topology is addressed. Besides its improved
efficiency is less suitable for applications characterized
by dynamic or unpredictable operating environments. The
paper [16] utilizes bidirectional SEPIC-Zeta converter for
microgrids to offer seamless power flow. However, demerits
such as component stress, efficiency loss and complex con-
trol makes the topology failure for high power applications.
In contrast to conventional power converters, which often
exhibit limitations in accommodating dynamic operational
conditions, a novel Modified Zeta-Cuk converter is proposed
for PV voltage enhancement.

In the realm of RES, the quest to extract optimal energy
yield from PV is a crucial which is achieved by the pro-
cess of MPPT. Classical MPPT techniques, such as Perturb
and Observe (P&O) [17] and InC [18], Fractional Open
Circuit Voltage (FOCV) [19], Hill climbing [20] etc. while
effective in tracking MPP, exhibit drawbacks like oscil-
lations around optimal point and sensitivity to changing
atmospheric conditions. Currently, researchers have directed
their attention towards employing soft computing and evolu-
tionary MPPT techniques which are suitable for optimizing
nonlinear behavior inherent in PV systems. Several soft
computing and biological algorithms, including Artificial
Neural Network (NN) [21], Fuzzy Logic Controller (FLC)
[22], Adaptive Neuro Fuzzy Interface System (ANFIS) [23],
cuckoo search [24], and Particle Swarm Optimization (PSO)
[25], have been integrated into evolutionary algorithms for
enhancedMPPT.Despite their advantages, evolutionary algo-
rithms exhibit slower convergence rates compared to classical
methods in some scenarios, resulting in longer tracking times
and potential performance delays. These limitations hin-
der precise power extraction and overall system stability.

To overcome these shortcomings, hybrid MPPT algorithm
combining InC-BOA is proposed.

Generating a reference current is essential for aligning
the power system with specific grid standards. It begins
with a two-step analysis of inverter-generated current: DWT
for frequency dissection [26], followed by PCA for feature
extraction [27]. The next phase involves RNN controller,
capable of capturing intricate temporal patterns, enabling the
creation of a sophisticated reference current that harmonizes
with grid complexities. Existing converters and techniques
lack comprehensive integration of advanced signal process-
ing and machine learning methods, leaving emphasis for
enhanced precision and efficiency in photovoltaic systems.
This gap permits investigation into practical implementa-
tion and validation of proposed framework for advancements
and real-world performance. The primary contribution of the
work includes:

• Implementation of novel Modified Zeta-Cuk converter
with Hybrid InC-BOA to simultaneously optimize volt-
age output and maximize power generation from the
PV system.

• Accomplishment of improved current signal perfor-
mance by applying DWT analysis for preprocessing
and PCA for feature extraction.

• Implementation of RNN controller for refined refer-
ence current generation, which enhances grid synchro-
nization, system stability, and overall operation.

• Demonstrating the proposed methodology’s effective-
ness through validation using MATLAB Simulink
software.

A. NOVELTY AND METHODOLOGY
Novelties:

a) To propose a novel approach for enhancing grid supply
using PV systems with Machine Learning Strategy.

b) Amaiden effort wasmade to utilizeModified Zeta-Cuk
converter for controlling the voltage output from PV
systems.

c) To recommend novel a Hybrid Maximum Power Point
Tracking (MPPT) algorithm combining Incremental
Conductance and Bat Optimization Algorithm (InC-
BOA), for maximizing the power output from PV
systems.

d) A new control strategy using Discrete Wavelet Trans-
form (DWT) analysis, Principal Component Analysis
(PCA) for feature extraction, and Recurrent Neural
Network (RNN) controller for grid-tied PV systems is
suggested for effective grid synchronization.

e) To develop an experimental prototype of grid con-
nected solar PV with hybrid InC-BOA technique
considering DWT, PCA and RNN approaches

Methodologies:
a) To optimize the PV output voltage using a novel mod-

ified Zeta-Cuk Converter considering Hybrid MPPT
with InC-BOA
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b) Real Time validation of the proposed system

The paper is structured by description of proposed framework
in Section II, followed by modelling of system components
in section III, outcomes of proposed system is described
Section IV and finally, Section V encapsulates the research
with a comprehensive conclusion of the study’s findings and
contributions.

II. PROPOSED SYSTEM DESCRIPTION
The proposed research introduces an innovative and com-
prehensive approach to enhance the efficiency, stability, and
performance of grid-tied PV systems through a series of
advanced technologies and strategies. Figure 1 illustrates the
architecture of proposed framework. The proposed research
not only maximizes the power output of PV systems but also
ensures their smooth operation within the larger grid network.

The methodology begins with the utilization of a Modified
Zeta-Cuk converter, which optimizes the voltage output of
PV systems. To further enhance power generation, a unique
MPPT algorithm is employed, which intelligently adjusts the
converter’s parameters based on a combination of InC-BOA
techniques. This integrated approach ensures PV system
operates at its maximum power point. The stabilized DC
output from the converter is then channeled to 38 VSI,
which serves as intermediary between PV system’s DC out-
put and AC grid. This conversion is essential for efficient
energy transfer and integration into larger power network.
To enhance AC current from inverter, DWT analysis is
employed, which separates the current signal into its inher-
ent frequency components. Subsequently, PCA is employed

to manage the complexity of frequency components, while
reduces the dimensionality of data and retaining critical infor-
mation. For refined control and accuracy, RNN controller
is introduced, that learns intricate patterns from the data
and generates a precise reference current profile. The HCC
then compares the actual inverter current with the refined
reference current. Based on this comparison, PWM generator
produces an output signal that fine-tunes the width of signal
pulses, effectively controlling the inverter’s current output.
The PWM-modulated current ensures seamless synchroniza-
tion with the grid’s frequency and phase, enabling smooth
integration into the existing power infrastructure.

III. MODELLING OF SYSTEM COMPONENTS
A. DESIGN OF PV SYSTEM
The proposed work utilizes PV as primary source for gen-
erating power. Figure 2 illustrates the single diode model of
photovoltaic system. The setup of a PV solar system consists
of several solar cells that are interconnected using a combi-
nation of series and parallel connections to achieve desired
output voltage.

According to semiconductor theory, the fundamental math-
ematical equation governing the current-voltage (I-V) charac-
teristics of a PV cell is expressed as:

F(s) =
KTi

1/sni
+
KIi

s
+ KDis

(
Ni

s + Ni

)
I = Iph − Io

[
e
(V+IRs)
aNsKT

q
− 1

]
−

V + IRs

Rsh
(1)

FIGURE 1. Block diagram of proposed ML assisted PV driven grid system.
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FIGURE 2. PV system configuration.

From equation (1), saturation current of diode and generated
photocurrent is specified as Io and Iph, similarly, the resis-
tance connected in shunt and series is determined as Rsh and
Rs. Moreover, diode ideality factor is specified as a, number
of PV cells connected in series is NS, electron charge as q,
temperature as T and Boltzmann constant as K. Additionally,
converter operation is essential to boost the PV voltage, which
is described in the subsequent section.

B. OPERATION OF MODIFIED ZETA-CUK CONVERTER
The proposed modified Zeta-Cuk converter depicted in
Figure 3, operates in continuous conductionmode to facilitate
efficient energy conversion. It combines the characteristics of
both Zeta and Cuk converters, enabling continuous voltage
regulation and energy transfer.

FIGURE 3. Equivalent circuit of modified Zeta-cuk converter.

1) OPERATION AT MODE-I
During the time interval from t1 to t2 switch S1 is in con-
ducting state, while switch S2 remains off. At this point, the
voltage across inductor L1 matches input voltage Vin. The
charging process occurs inductively, with L1 receives input
voltage Vin, and inductor L2 being charged via Vin + VC1.
Simultaneously, capacitor C1 is discharged through inductor
L‘ and output voltage, Vo as illustrated in Figure 4(a).

VL1 = Vc1 (2)

VL2 = Vin + Vca − Vo (3)

2) OPERATION AT MODE-II
In the time interval from t1 to t2, switch S2 is in conducting
state while switch S1 remains in OFF state. This configu-

FIGURE 4. Operation of modified Zeta-Cuk converter at (a) Mode-I and
(b) Mode-II.

ration is complemented by the activation of diodes D1 and
D2. During this period, inductor L1 discharges its stored
energy through capacitor C1, facilitating energy transfer.
Concomitantly, inductor L2 is charged using input voltage
Vin. Furthermore, capacitor C1 experiences charging through
the energy transferred from inductor L1. This dynamic inter-
play of switches, diodes, and inductors leads to complex
energy exchange process illustrated in Figure 4(b).
The mathematical expression governing the behavior of

these inductors is expressed by

VL1 = −Vc1 (4)

VL2 = Vin − Vo (5)

Applying volt-second balance equation to inductor L1 results
in the determination of capacitor voltage VC1.

1
T

 DT∫
0

Vindt+

T∫
DT

Vc1dt

 = 0 (6)

By simplifying Equation (6), it becomes feasible to ascertain
the average value of VC1 as

DVin

(1 − D)
= Vc1 (7)

Utilizing a volt-second balance equation for inductor L2, the
subsequent voltage gain can be derived:

1
T

 DT∫
0

(Vin + Vc1 − Vo) dt+

T∫
DT

(Vin − Vo) dt

 = 0 (8)
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FIGURE 5. Switching cycle of modified Zeta-Cuk converter.

Upon simplifying Equation (8), voltage gain is computed as:

Vo

Vin
=

D2

(1 − D)
(9)

By intelligently switching between thesemodes, themodified
Zeta-Cuk converter optimizes energy conversion and accom-
modates varying voltage requirements efficiently.

IV. MPPT TECHNIQUE FOR PV SYSTEM
The InC with Bat Optimization Algorithm is an advanced
MPPT controller designed to optimize the energy extraction
from PV systems under varying environmental conditions.
This hybrid approach combines InC algorithm and BOA,
leveraging their respective strengths to enhance the efficiency
and accuracy of MPPT process.

A. INCREMENTAL CONDUCTANCE (INC) TECHNIQUE
The InC algorithm operates based on the rate of change
of power with respect to changes in voltage and current.
It calculates the conductance of PV system and compares
it with incremental conductance (dP/dV), which is propor-
tional to the power change with respect to voltage change.
By adjusting the operating voltage and tracking changes in
conductance, InC algorithm seeks to maintain the system at
point where power change is zero, indicating that the operat-
ing point is close to MPP.

dP
dV

= 0 (10)

The above expression is written as,

dP
dV

=
d(IV)
dV

= 1 + V
dI
dV

= 0 (11)

dI
dV

< −
1
V
at right of MPP (12)

dI
dV

> −
1
V
at left of MPP (13)

dI
dV

= −
1
V
at MPP (14)

InC’s ability to respond swiftly to changes in solar irradi-
ance and temperature makes it an essential tool in achieving
efficient energy conversion. However, its reactivity causes
oscillations around MPP, especially in dynamic environ-
ments. This limitation has paved the way for exploration
of hybrid approaches that complement InC’s strengths with
global optimization techniques to ensure stable and accurate
MPP tracking.

B. BAT OPTIMIZATION ALGORITHM
The Bat algorithm is a nature-inspired optimization technique
that mimics the behavior of bats to solve complex optimiza-
tion problems. In nature, bats use echolocation and adaptive
foraging behaviors to locate prey. Similarly, bat algorithm
models bats’ searching and foraging behaviors to find the
optimal solution. Based on feedback intensity, proximity is
determined. Higher intensity signifies closeness, prompting
the bat to intensify pulse emission for capture. Bats’ flight
features include random velocity (Vi), position (Xi), and
loudness (li). Emission rate, within [0, 1] depends on target
distance. Bat’s velocity and position are updated as follows:

Xt+1
i = Xt

i + Vt+1
i (15)

Xt+1
i = Vt

i + (Xt
i − X∗)fi (16)

The frequency assigned at random is specified as fi.

fi = fmin + (fmax − fmin) ϕ (17)

where ϕ is a uniform random variable in [0,1], while x∗ is the
best global position. During position updates, emission rate
influences. If ϕ surpasses emission, exploitation mode acti-
vates. Current position changes using local search solution,
given by:

Xn = X∗
+ lt (18)

The random number is drawn from Gaussian or uniform
distribution in [−1, 1], while lt stands for average loudness
at that time. The fitness function improves when generated
random number is smaller than loudness. Exploration yields
a new solution, updating parameters like emission rates and
loudness. Mathematically, parameter update is expressed as:

lt+1
l = ρltl (19)

rt+1
l = ri(1 − eαt) (20)

Here, ρ is a constant ranging from 0 to 1, and α is a positive
constant. The behavior simulates a bat’s search for food,
involving energy tracking to achieve Pmaxpoint in PV model.
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C. PROPOSED HYBRID INC-BOA MPPT TECHNIQUE FOR
TRACKING PV POWER
The proposed hybrid InC-BOA approach combines InC’s
rapid response with bat’s optimization capabilities to achieve
efficient and stable tracking of solar PV power and the MPP.

1) INITIAL TRACKING WITH InC
At the initial stage of process, InC algorithm is engaged
as primary tracker. It responds quickly to changes in solar
irradiance and rapidly adjusts the PV system’s operating point
to track MPP. However, under certain conditions, IncCond
exhibit oscillations around MPP due to its reactive nature.

2) BOA AS A FINE-TUNER
This is where BOA comes into performance. When InC
encounters oscillations, BOA steps in to fine-tune the track-
ing process. BOA optimizes the PV system’s operating point
by considering both local and global best solutions, allowing
it to overcome oscillation issue and converge to a stable MPP.
BOA introduces global optimization capabilities for tracking
process. It guides the system towards true MPP by exploring
solution space intelligently. By adjusting the operating point
using BOA’s equations, the system efficiently finds optimal
conditions for power extraction.

Steps in Hybrid Algorithm
Step 1: Initialize bat population with random positions and

velocities.
Step 2: Calculate incremental conductance (dI/dV)
Step 3: Determine the direction of voltage change based

on the sign of dI/dV.
Step 4: Adjust the voltage based on direction of change

and update power output.
Step 5: Evaluate power output and select best solution

among the bats.
Step 6:Update bat positions using the BOA equation (20),

considering current and global best solutions.

NewPosition

= Current Position

+ ξ∗(Current Position − Best Position)

+ A∗(Global Best Position−Current Position)

+ rand()∗(Upper Bound − Lower Bound)

(21)

If convergence criteria met
Exit
Else
Step 7: Repeat steps 2 to 6 iteratively.
Step 8: Track theMPP using InC but introduce BOA based

adjustment for fine-tuning.
These advanced strategies leverage the adaptability and

learning capabilities of optimization algorithms to enhance
tracking accuracy, minimize oscillations, and achieve higher
efficiency, ensuring optimal power extraction from photo-
voltaic systems across varying operational conditions.

V. DWT ANALYSIS
DWT is a signal processing technique used for analyzing
signals in both time and frequency domains. It decomposes
a signal into different frequency components, revealing both
high-frequency details and low-frequency trends. In the pro-
posed work DWT is used to analyze the current signal
produced by inverter.

A. DWT PROCESS FOR CURRENT SIGNAL ANALYSIS
The process begins by sending signal through a half-band
low-pass filter with impulse response h[n]. This filtering
is similar to convolving the signal with filter’s impulse
response. Convolution in discrete time is mathematically
defined as:

x[n]∗h[n] =

∞∑
k=−∞

x[n].h[n-k] (22)

A half-band low-pass filter eliminates frequencies above half
the signal’s maximum frequency. Down sampling output by
two discards half the samples without losing information.
DWT coefficients contain information from adjacent data,
preserving the scale. Low-pass filtering reduces resolution
but maintains scale. Subsampling by two removes redundant
samples, effectively doubling the scale.

Mathematically, the procedure is expressed by,

y[n] =

∞∑
k=−∞

h[k].x[2n-k] (23)

The expression for approximate and detailed components is
determined as:

yhiah =

∑
n
x[n].g[2k-n] (24)

ylow[k] =

∑
n
x[n].h[2k-n] (25)

This iterative process yields multiple levels of coefficients,
revealing insights into the signal’s behavior across various
frequency ranges. After preprocessing, feature extraction is
performed to extract relevant features from the transformed
signal.

VI. PRINCIPAL COMPONENT ANALYSIS FOR FEATURE
EXTRACTION
PCA aims to reduce the dimensionality of signal while
retaining most relevant information. The DWT-decomposed
current signal generates a set of coefficients, which is
potentially of high dimension. Applying PCA allows for iden-
tification of principal components or directions of maximum
variance in this coefficient space. The method necessitates
training with diverse data sets representing different testing
conditions. To derive Eigen signals, each observation’s data
set is transformed into a column vector 0n with a length of
N variables. For M observations, the resulting matrix 0 has
dimensions M x N. Thus,

0 = [01, 02, 03, . . . ., 0n ] (26)
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Average signal ψ is expressed as

ψ =
1
M

M∑
n=1

0n (27)

Difference signals are generated by subtracting the mean
signal from each training signal:

φi = 0i − ψ (28)

These vectors undergo PCA to determine orthogonal eigen-
vectors. Calculating the covariance matrix C is essential for
this process.

C =
1
M

M∑
n=1

φn,C =
1
M

M∑
n=1

φn

C =
1
M

∑M

n=1
8n8

T
n =

1
M
A · AT (29)

From expression above, A = [φ1, φ2, φ3, .., φn]. However,
computing eigenvectors for covariance matrix C becomes
computationally intensive due to its size N x N. A more
efficient alternative is considered, where Virepresents eigen-
vectors of A xAT, and corresponding eigenvalues are denoted
by:

ATAvi = µivi (30)

Henceforth, C becomes

µi = Avi (31)

where C = A x A T. The eigenvectors, referred to as Eigen
signals µi, are obtained. Among them, top M Eigen signals
are selected based on their corresponding largest eigenvalues.
Any signal is represented as a linear combination of these
Eigen signals. For a signal 0, its principal components are
defined as follows:

Wk = µT
k (0 − ψ) (32)

The value Wk represents data anticipated onto the axis asso-
ciated with eigenvector. These values serve as new features
suitable for classification and recognition tasks.

FIGURE 6. RNN based reference current generation.

VII. GENERATION OF REFERENCE CURRENT BY RNN
Harmonics arise from non-linear loads, but methods to mit-
igate them exist. A powerful strategy involves injecting
counteractive harmonics at the Point of Common Coupling
(PCC). This demands accurate reference current generation
is achieved using RNN.

RNN’s architecture resembles an Elman network, where
the hidden layer’s output at step k-1 becomes extra input for
each subsequent step k. Another memory element is intro-
duced, combined with feedback from prior step, enhancing
network’s ability to grasp the system’s dynamic behavior.
Weights are adjusted via back-propagation during training.
RNN is employed to segregate harmonic components ih from
load current iL yielding an expression:

ih = iL − ibase (33)

In Equation (32), the fundamental component is denoted as
ibase and it’s crucial to highlight that reference current i∗sd is
generated by RNN, shown in Figure 6 leading to harmonic
elimination. RNN comprises multiple successive recurrent
layers designed to map sequences. It excels at extracting
contextual information from sequences, making sequence
length inconsequential when utilizing RNN. This configura-
tion establishes a one-to-one relationship between input and
output time steps, controlled by input and overlook gates
regulating current input and prior hidden state.

In proposed work, HCC compare the generated reference
current with actual current produced by inverter. If the actual
current falls outside hysteresis band, the controller adjusts the
system to bring it back within specified range. This method
provides a simple and effective means of maintaining a con-
trolled parameter within desired bounds, enhancing stability
and performance in the photovoltaic system’s grid integra-
tion.

VIII. RESULTS AND DISCUSSIONS
This section presents the MATLAB simulation results for
proposed machine learning based PV-Grid system employing
Modified Zeta-Cuk converter. Design specifications for the
system are outlined in Table 1. The simulation outcomes
showcase the converter’s enhanced power conversion effi-
ciency and lowered Total Harmonic Distortion (THD). Addi-
tionally, the section addresses the performance of grid-tied
system concerning grid synchronization and stable operation.

The illustrations for waveforms of temperature and irra-
diance of solar panel is depicted in Figure 7(a) and (b).
An initial temperature level of 25◦C is sustained till 0.25s,
after a step rise occurs and reaches the temperature level of
35◦C, which is further maintained constant. In correspon-
dence with temperature, the irradiation level of solar panel
at startup stage is 800W/sq-m until 0.25s, after, the rise in
temperature causes variations and results in irradiance value
of 1000W/sq-m.

In Figure 8(a) the input voltagewaveform is depicted, illus-
trating that, at the beginning stage, a stabilized voltage of 60V
is maintained till 0.25s, after in response to rise in irradiance

138826 VOLUME 13, 2025



V. R. Kota et al.: Grid Integration of PV Systems With Advanced Control and Machine Learning Strategies

TABLE 1. Design specification parameters.

FIGURE 7. Waveform of solar panel (a) Temperature and (b) Irradiance.

level the voltage gets rises and attains a constant value of
70V further. In accordance with input voltage Figure 8(b)
demonstrated the solar panel current waveform. From figure,
it is noticed that, at the beginning fluctuation arises, with rise
and fall in current level. After 0.25s, the current increases and
a consistent current level of 155A is attained. The attained
voltage and current is fed as input to Modified Zeta-Cuk
converter.

The output voltage and current from proposed converter
is depicted in Figure 9(a) and 9(b). The converter output
response shows initial rise in voltage with distortions. After
0.1s, with the assistance of InC-BOA MPPT controller,
a stabilized voltage of 600V is achieved without any fur-
ther oscillations. Likewise, the converter current illustrated
minor fluctuations at the beginning. Subsequently at 0.25s,
a dependable current level of 10A is sustained further.

The response of 38 grid in terms of voltage and current
is illustrated in Figure 10(a) and 10(b). It is noticed that,

FIGURE 8. Solar panel parameters (a) Voltage and (b) Current.

FIGURE 9. Modified zeta-cuk converter output with InC-BOA MPPT
technique (a) Voltage and (b) Current.

a stabilized grid voltage of 430V is accomplished using the
proposed system. Subsequently, a consistent current value
of 12A is achieved. This indicates that the proposed system
results in optimal grid performance.

The response waveform for grid illustrating voltage and
current is depicted in Figure 11. From figure, it is noticed that
a stabilized voltage of 430V together with current of 12A is
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FIGURE 10. Waveforms of 38 grid (a) Voltage and (b) Current.

FIGURE 11. Inphase grid waveform.

accomplished. The waveform demonstrates successful man-
agement of power supply, maintaining the desired electrical
parameters within the specified limits, crucial for stable and
efficient operation.

In Figure 12(a) Real power waveform represents actual
power transferred in a circuit, while Figure 12(b) illustrates
the reactive power waveform signifying power oscillations
between sources and loads. This determines the apparent
power, impacting energy efficiency and system stability.

The reference current generated with the support of RNN
controller is for 38 grid is illustrated in Figure 13. It is
observed optimal reference current is produced on all the
three phases using RNN controller with its sequential learn-
ing ability. By analyzing past data, the RNN predicts future
current patterns, aiding in grid synchronization and enhanc-
ing control precision for power systems.

The grid current THD of 2.11%, is achieved by the pro-
posed system, as depicted in Figure 14. This waveform shows
minimal distortion in its frequency components, indicating a
clean and efficient distribution of power while maintaining
high-quality electrical output.

FIGURE 12. Real (P) and reactive (Q) power waveform.

FIGURE 13. Reference current waveform using RNN controller.

Hardware Analysis:
The hardware setup of proposed framework is employed

for validation purpose is illustrated in Figure 15. The
laboratory prototype features a SPARTAN 6E FPGA (Field-
Programmable Gate Array) functioning as a configurable
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FIGURE 14. Grid current THD waveform.

FIGURE 15. Experimental prototype.

hardware controller, programmed with InC-BOA. A Mod-
ified Zeta-Cuk converter is integrated into prototype to
effectively amplify the input voltage level. The presence of a
driver circuit in prototype guarantees seamless incorporation
and coordinated functioning of diverse components.

The voltage waveform of PV system initially displays
slight distortions during the initial stage and subsequently
stabilizes at 180V, as illustrated in Figure 16(a). Following
this, Figure 16(b) portrays an oscillating current waveform.
Eventually, a consistent PV current of 17A is attained, leading
to a seamless and steady output.

In Figure 17(a), the output voltage of converter demon-
strates a consistent voltage of 600V, due to the utilization of
InC-BOA. Simultaneously, Figure 17(b) depicts fluctuations
in the current waveform during the startup phase, followed
by stabilization at a steady value later. To ensure a consistent
output, enhancements might be necessary to mitigate the
voltage oscillations and guarantee a dependable performance.

The waveforms in Figure 21(a) and 21(b) portray the volt-
age and current outcomes of 38 grid. A stabilized voltage
and current is obtained as the results of proposed converter
and control strategy. Within the context of proposed system
scenarios, the introduction of an LC Filter effectively reduces
the impact of harmonics generated by nonlinear loads.

The grid current waveform portrays the alternating flow
of electricity in system. Notably, its low THD of 3.65%
underscores the waveform’s closeness to its fundamental fre-
quency, signifying efficient power distribution with minimal

FIGURE 16. PV panel (a) Input voltage and (b) Input current waveform.

distortion from harmonic influences. This attests to the grid’s
stable performance and adherence to quality power standards.

TABLE 2. Converter efficiency comparison.

The performance of converter in terms of efficiency is
contrasted with other similar modified converter topologies
including modified SEPIC [28], modified Cuk [29], Mod-
ified Luo [30] and Modified Landsman [31]. It is noticed
that, efficiency values of 89.74%, 91%, 91.5% and 93.2%
is achieved using existing modified topologies, while the
proposed Modified Zeta-Cuk converter ranks with maximum
efficiency value of 98.2%, which is comparatively higher.

TABLE 3. Tracking efficiency comparison.
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FIGURE 17. Converter waveforms (a) Output voltage and (b) Output
current.

The proposed work establishes a novel MPPT controller
combined InC algorithm and BOA. To determine the analysis
of proposed tracking technique approaches like Hill Climb-
ing [32], Variable Step P&O [33], Variable Step InC [34],
and Fuzzy [35] are compared and listed in Table 3. From
analysis it is concluded that, proposed hybridMPPT approach
results in providing maximum efficiency value of 98.54%,
which is higher in comparison with other MPPT approached
stated.

The graphical representation of converter and MPPT con-
troller efficiency is depicted in Figure 20. It is evident from
the observation, that Modified Zeta-Cuk converter achieves
the highest efficiency of 98.2%, whereas the tracking effi-
ciency of InC-BOA MPPT controller attains 98.54%. In the
proposed work, both converter and controller attains maxi-
mum efficiency and results in accomplishing uninterrupted
optimal grid performance.

The converter output response utilizing MPPT controller
like P&O, Fuzzy and proposed InC-BOA is contrasted and
resulted in Figure 21. It is observed that the proposed
InC-BOA MPPT controller results is maximum efficiency
of 600V, at 0.1s, which is comparatively better than other
controllers mentioned.

The analysis of proposed InC-BOA MPPT controller is
contrasted with FLC and P&O MPPT techniques in terms of
maximumoutput power, shown in Figure 22. It is noticed that,

FIGURE 18. 38 grid (a) Voltage and (b) Current waveform.

FIGURE 19. Grid current THD waveform.

minimized output power is attained using P&O technique,
while FLC shows improvement than P&O approach. Mean-
while, the proposed hybrid approach combing InC and
BOA results in generating maximum output power of 6kW
(6000W) at irradiance level of 1000W/m^2, which is com-
paratively higher than other similar approach.

In a waveform depicting IAE (Integral of Absolute Error)
against iteration count, the InC-BOA MPPT demonstrates
its superiority in contrast to FLC and P&O technique.
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FIGURE 20. Efficiency comparison of (a) Converter and (b) Controller.

FIGURE 21. Output voltage comparison with MPPT controllers.

FIGURE 22. Comparison of output power vs. Irradiance.

As iterations progress, the IAE values consistently decrease,
indicating a gradual reduction in the cumulative absolute
error between predicted and actual values, which is evident

FIGURE 23. Error comparison (a) IAE and (b) RMSE.

from Figure 23(a). In contrast, the RMSE (Root Mean Square
Error) of InC-BOAMPPT achieves exceptional performance,
shown in Figure 23(b). This trend underscores the algorithm’s
ability to converge towards the true maximum power point
of the solar panel, showcasing its proficiency in accurate
tracking and optimization over iterations.

TABLE 4. Experimental results: THD comparison of converter.

The performance of proposed system using Modified
Zeta-Cuk in achieving grid synchronization is contrasted with
respect to grid current THD and is listed in Table 4, for
different converters. It is observed that, maximum THD value
of 4.3% is accomplished usingModified Landsman converter
of [31], while modified topologies of SEPIC [28], Luo [30]
results in THD of 4.08% and 3.3%, respectively. In accor-
dance with this, the proposed Modified Zeta-Cuk converter
grades with reduced THD of 2.11%, which is comparatively
lower with optimal grid performance.

The graphical representation of converter THD analaysis
is illustrated in Figure 24. The THD analysis is contrasted
with Modified converters of Landsman [31], SEPIC [28]
and Luo [30] with proposed modified Zeta-Cuk converter,
of which the proposed converter ranks better with minimal
THD of 2.11%. This means that the signal it generates has
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FIGURE 24. Current THD comparison.

the least amount of unwanted distortion compared to the
other converters, making it a promising choice for various
applications.

IX. CONCLUSION
This paper presents a pioneering approach that merges
advanced control strategies and machine learning techniques
to optimize the efficiency and stability of grid-tied PV
systems. The Modified Zeta-Cuk converter together with
InC-BOAMPPT algorithm, the voltage output of PV systems
is enhanced, leading to an increased energy yield. Signal
analysis, utilizing DWT and PCA, enables precise current
analysis and extraction of relevant features. The integration
of RNN classification model refines current control, resulting
in a more accurate and stable reference current. Through
MATLAB Simulink, the proposed approach showcases sub-
stantial enhancements in energy output and synchronization
performance. The proposed Modified Zeta-Cuk converter
achieves maximum voltage gain and efficiency of 98.2%,
with InC-BOA MPPT controller accomplishing a tracking
efficiency of 98.54% respectively. Also, the proposed con-
verter results in reduced THD of 2.11%, causing grid to
perform optimally. The proposed research not only advances
the field of renewable energy generation but also contributes
to the broader goal of sustainable energy integration into
existing power grid infrastructure. Moreover, it paves the way
for more durable and dependable renewable energy solutions
in pursuance of a greener future.
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