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Abstract: The development of beyond 5G (B5G) future wireless communication networks
(FWCN) needs novel solutions to support high-speed, reliable, and low-latency communi-
cation. Unmanned aerial vehicles (UAVs) and reconfigurable intelligent surfaces (RISs) are
promising techniques that can enhance wireless connectivity in urban environments where
tall buildings block line-of-sight (LoS) links. However, existing UAV-assisted communica-
tion strategies do not fully address key challenges like mobility management, handover
failures (HOFs), and path disorders in dense urban environments. This paper introduces a
deep deterministic policy gradient (DDPG)-based UAV-RIS framework to overcome these
limitations. The proposed framework jointly optimizes UAV trajectories and RIS phase
shifts to improve throughput, energy efficiency (EE), and LoS probability while reducing
outage probability (OP) and HOF. A modified K-means clustering algorithm is used to
efficiently partition the ground users (GUs) considering the newly added GUs as well. The
DDPG algorithm, based on reinforcement learning (RL), adapts UAV positioning and RIS
configurations in a continuous action space. Simulation results show that the proposed
approach significantly reduces HOF and OP, increases EE, enhances network throughput,
and improves LoS probability compared to UAV-only, RIS-only, and without UAV-RIS
deployments. Additionally, by dynamically adjusting UAV locations and RIS phase shifts
based on GU mobility patterns, the framework further enhances connectivity and relia-
bility. The findings highlight its potential to transform urban wireless communication by
mitigating LoS blockages and ensuring uninterrupted connectivity in dense environments.

Keywords: DDPG; GUs connectivity; RIS configuration; LoS probability; UAV trajectory;
UAV-RIS; user grouping

1. Introduction
The use of higher frequency bands such as millimeter wave (mmWave) and Terahertz

(THz) in beyond 5G (B5G) networks is expected to greatly increase network capacity,
support a large number of devices, and enable applications such as virtual reality (VR)
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and augmented reality (AR) [1–5]. To meet these requirements, UAVs have emerged as a
promising solution. Unlike traditional ground base stations (GBSs), UAVs can be deployed
flexibly, adjust their positions as needed, and provide cost-effective wireless coverage [6–8].
With their ability to establish line-of-sight (LoS) links with user equipment (UEs), UAVs
improve data rates, connectivity, and service reliability [9–11].

Despite these features, UAV-based communication faces several challenges, especially
in dense urban environments. High-rise buildings and other obstacles like trees block LoS
paths, limiting coverage and causing user disconnections. Additionally, UAVs are highly
mobile, which can cause frequent handovers, and maintaining stable connections over
long distances can be difficult. These issues make UAV-only communication systems less
reliable in dense urban environments.

To address these issues, reconfigurable intelligent surfaces (RIS) technology has been
proposed as a promising solution. RIS consists of an extensive array of passive reflecting
elements that can intelligently adjust the phase of incoming signals to improve wireless
transmission [12–15]. Using adjusting and redirecting signal phenomena around obstacles,
RIS can enhance network coverage and data rates in dense areas [16]. Since RIS elements are
passive and do not require active power sources, they offer an energy-efficient alternative to
traditional relay systems. However, RIS alone is not enough to fully solve the challenges of
UAV-based communication. While RIS can improve signal transmission, it cannot handle
the frequent link disruptions caused by UAV mobility and user movement. Therefore,
integrating UAVs with RIS can provide a more robust solution using both technologies.
The UAV ensures flexible coverage, while the RIS enhances signal quality by reflecting
signals toward intended users.

This work explores UAV-integrated RIS (UAV-RIS) to improve mobility management
and HO performance in dense urban heterogeneous network (HetNet) environments. The
UAV provides LoS communication, while the RIS dynamically adjusts signal reflections to
mitigate blockages. To maximize throughput, improve energy efficiency (EE), and ensure
seamless connectivity, we jointly optimize UAV trajectories and RIS phase shifts using
a deep deterministic policy gradient (DDPG) approach. Simulation results demonstrate
that the proposed UAV-RIS framework significantly reduces HO failures (HOF), enhances
network reliability, and improves overall communication performance, highlighting its
potential for B5G wireless networks.

1.1. Related Work

UAVs and RIS have emerged as essential solutions for addressing the challenges of
establishing LoS and reliable connectivity to GUs. Most existing studies focus on either
deploying UAVs (static and mobile) or deploying RIS on buildings to maximize the communi-
cation performance of GUs. However, these approaches significantly limit their application
in dynamic, real-time GU communication within densely populated urban environments.
The integration of RIS in UAV-aided communication systems has recently gained significant
attention due to improved system performance [17]. For example, a UAV-based scheme for
enhancing mobility management and reducing handover (HO) rate in FWCNs is proposed
in [18], utilizing reinforcement learning (RL) to optimize UAV trajectories and enhance LoS
links, ensuring seamless connectivity for GUs during transitions between cells. Similarly,
a multi-UAV-mounted BS framework for serving multiple IoT devices is proposed in [19],
which optimizes 3D layouts and resource allocation to minimize uplink transmission power.
However, UAV flexibility is overlooked, which reduces coverage and the ability to adjust
positions in response to real-time communication demands. Other studies, such as [20], focus
on lowering the HO rate and interference using deep Q-network (DQN) algorithms for UAV
communications. However, they do not fully address challenges such as limited coverage at



Drones 2025, 9, 437 3 of 21

high altitudes or LoS blockages. Additionally, ref. [21] introduces a RIS-assisted HO scheme
utilizing deep reinforcement learning (DRL) to mitigate mm-wave channel blockages, sig-
nificantly reducing HO rate and improving spectral efficiency (SE) through joint adjustment
of beamformers and RIS phase shifts. In contrast, RIS-assisted UAV systems have become
pivotal in enhancing communication performance, mainly when direct communication links
are unavailable. Several studies have explored UAV-RIS systems with various optimization
techniques to improve network performance in FWCNs. For instance, ref. [22] investigated
a UAV-RIS downlink transmission system and proposed a successive convex approxima-
tion (SCA)-based algorithm to optimize UAV trajectory and RIS beamforming. In [23], RIS
in UAV-assisted communication systems was explored to achieve substantial performance
improvements in UAV-aided cellular networks. Another study, [24], used DRL to optimize
UAV trajectory, RIS phase shifts, and power allocation, aiming to maximize the sum rate for
mobile UEs. Similarly, ref. [25] developed a RIS-assisted UAV communication system with
alternating optimization algorithms to jointly optimize UAV mobility, resource allocation,
and RIS scheduling, ensuring improved system rate and heterogeneous QoS for each mobile
user. In [26], an RIS-assisted UAV framework employing an energy-efficient UAV deployment
(EEUD) algorithm is proposed to maximize energy efficiency by jointly optimizing RIS phase
shifts, UAV trajectory, and BS transmit power. The study in [27] investigated UAV-assisted
RIS deployment to enhance connectivity and SNR when direct communication links are un-
available. Furthermore, ref. [28] utilized a DRL scheme to improve communication efficiency
between the ground base station (GBS) and mobile vehicles. A similar approach was adopted
in [29], which employed the deep deterministic policy gradient (DDPG) algorithm to optimize
BS power, RIS reflection coefficients, and UAV positioning to maximize the communication
rate. In [30], a total energy harvesting strategy for a UAV-RIS system is proposed to enhance
energy efficiency (EE) and meet QoS requirements. Other studies, such as [31], have used the
UAV-RIS technology to improve downlink secrecy rates by optimizing transmit power alloca-
tion, RIS beamforming, and UAV trajectory, demonstrating the potential for high performance
in FWCNs. The comparison of the proposed work with existing models, in terms of system
configuration, optimization techniques, mobility consideration, and limitations, is presented
in Table 1.

Table 1. Comparison of the proposed work with existing related studies.

Ref. System Configuration Optimization Technique Mobility Consideration Remarks

[23] RIS-assisted UAV RIS location optimization
for gain maximization UAV users

Does not consider GU
mobility; focuses only on
RIS deployment
in buildings.

[24] RIS-assisted UAV DRL-based rate
enhancement Mobile GUs Limited joint design for

RIS and UAV trajectories.

[29] IRS-based UAV-NOMA DRL-based beamforming
and UAV optimization

Mobility clustering
not considered

Lacks user mobility
clustering despite
IRS integration.

[30] UAV-RIS-SWIPT SWIPT-based energy
optimization Static users

Does not considered
mobile users, focus on
static users with
energy-harvesting RIS.

[31] RIS-UAV Mobile Vehicle
Successive convex
approximation-based
secrecy rate maximization

UAV is assumed to
be static

No dynamic UAV
mobility; RIS for secrecy
enhancement.

This Work UAV-RIS with
user clustering

DDPG-based joint UAV
trajectory and RIS
phase optimization

Dynamic mobility
management of
mobile GUs

Fully dynamic, adaptive
UAV-RIS integration with
user clustering.
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1.2. Motivations and Contributions

From the aforementioned studies, it is evident that relatively few investigations have
focused on RIS-empowered UAV communication systems aimed at enhancing the perfor-
mance of FWNs. Much of the existing research has concentrated on maximizing network
throughput, secrecy, and sum rate while reducing energy consumption. However, none of
these studies have addressed GU mobility management and HO performance in FWNs
through the joint utilization of UAVs and RIS. Deploying low-cost RIS on UAVs provides
multiple transmission paths for GUs, improving communication quality and overcoming
obstacles and limitations in terrestrial wireless networks. Motivated by the research works
in [18,21,22], which focus on UAV-only, RIS-only, and UAV-RIS deployments, respectively,
this paper proposes an RIS-assisted UAV system that employs DDPG and DQN algorithms
to manage GU mobility and improve HO/mobility performance in dense urban envi-
ronments. Furthermore, the proposed framework enhances communication by adjusting
RIS phase shifts and utilizing UAV mobility to optimize its trajectory based on the GU’s
location and requirements, ensuring stable link quality and improved connectivity. The
main contributions of this paper are as follows:

• A novel UAV-RIS framework is proposed to enhance signal strength and improve LoS
connectivity between UAVs and GUs in dense urban environments by addressing
communication disruptions caused by ground obstacles.

• A modified K-means clustering algorithm is introduced for efficient user partitioning,
alongside a DDPG algorithm to intelligently optimize UAV trajectories and RIS config-
urations simultaneously in a continuous action space for managing GUs mobility.

• The proposed framework, utilizing the DDPG algorithm, significantly improves key
network performance metrics, including HOF, OP, EE, throughput, and LoS probability,
compared to state-of-the-art schemes.

The rest of this paper is organized as follows: Section 2 presents the system model for
the RIS-assisted UAV communication system. Section 3 describes the problem formulation
and discusses the proposed iterative solution. Performance results are then presented and
analyzed in Section 4. Finally, the conclusions and future work are outlined in Section 5.

2. System Model
This section introduces the system model for downlink data transmission to manage

GU mobility in 5G/B5G networks by utilizing a mobile RIS-assisted UAV wireless commu-
nication network. The detailed architecture of the system model is depicted in Figure 1,
which consists of a BS operating at the mmWave frequency band, equipped with multiple
antennas [32]. We assume that the direct communication links between the GBS and the
GUs are obstructed by tall buildings or other environmental impediments, so we employ
UAV-RIS technology to improve the downlink data transmission service and GUs mobility
performance. The BS is located at the center point of an urban area denoted by C and serve
GUs are randomly distributed in that area denoted by U. These GUs are partitioned into
different groups based on SINR to enhance the system’s performance. In NLoS scenarios,
the communications between the GBS and the GUs is assisted by a mobile UAV-RIS, mod-
eled as a uniform planar array (UPA). The total number of reflective elements is F = FxFy,
where Fx and Fy are the number of RIS reflecting elements along the X-axis and Y-axis,
respectively. The RIS learns the optimal method to reflect incident signals by adjusting
the phase shift, which helps improve the mmWave network’s performance. In this model,
we consider that a single UAV-RIS flies at a fixed altitude over a specific area and its position
remains the same during one time slot and the flight is stable. Without loss of generality, the
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coordinates of GBS, user location, and UAV-RIS can be defined as qB = (xBS = 0, yBS = 0, hBS),
qU = (xGU, yGU, hGU), and qUR = (xUR, yUR, hUR), respectively.

 

UAV-RIS

 

UAV-RIS

GBS

Group 1

Group 3 

Group 2 

Group m

GBS-GU Link NLoS/Blocked Link UAV-RIS to GU LinkGBS to UAV-RISGBS-GU Link NLoS/Blocked Link UAV-RIS to GU LinkGBS to UAV-RIS

LoS Users

LoS Users

NLoS Users NLoS Users

Figure 1. UAV-assisted RIS framework for GUs mobility management.

To facilitate the trajectory design, the total UAV-RIS flying time, T, is divided into
N time slots within equal time intervals (T = Nδt), where δt is a single slot length. The
movement of UAV-RIS satisfies the following mobility constraints:

∥ qUR[n + 1]− qUR[n]∥2 ≤ V2, n = 1, . . . , N − 1, (1a)

∥ qUR[N]− qF∥2 ≤ V2, qUR[1] = q0, (1b)

or can be written as follows:

∥ qUR[n + 1]− qUR[n]∥2 ≤ V2, n = 1, . . . , N − 1, (2)

where qF and q0 represent the final and initial horizontal positions of UAV-RIS, respectively.
The values of q0 and qF are determined by the centroids of the user groups obtained through
the modified K-means clustering algorithm described in Section 3.1. This clustering process
considers both user locations and SINR values to ensure optimal UAV-RIS positioning
at the start and end of the mission within the feasible flight zone. V = vmaxδt is the
maximum horizontal distance that the UAV-RIS travels in a single time slot, and vmax

denotes the maximum UAV-RIS speed in m/s. The UAV operates at a fixed altitude within
each time slot due to airspace safety regulations and energy efficiency considerations, while
horizontal coordinates are dynamically optimized across slots.
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The Euclidean distance from GBS to the UAV-RIS and from the UAV-RIS to the GUs is
repressed by d1 and d2, respectively, and can be calculated as

d1 =

√
(xBS − xUR)

2
+ (yBS − yUR)

2
+ (hBS − hUR)

2 (3)

d2 =

√
(xUR − xGU)

2
+ (yUR − yGU)

2
+ (hUR − hGU)

2 (4)

There may exist LoS (direct) and NLoS (indirect) links between UAV-RIS and GUs
communication. These indirect links, caused by obstacles such as trees and high-rise
buildings, introduce a multipath propagation effect that can degrade transmission signal
quality and distort QoS in urban HetNet. To address this challenge, UAV-RIS is deployed
to enhance the probability of LoS links, thus enabling high-speed data transmission with
improved connectivity and HO performance. The probability of LoS between UAV-RIS and
GUs is given as

pUR
LoS =

1

1 + ξexp
[
Ψ
(

180
π tan−1 hUR

d2

)
−ξ
] (5)

Here, Ψ and ξ are constant values representing the environmental influence such as
urban, and suburban environments. The probability of NLoS between the UAV-RIS and
GU u is

pUR
NLoS = 1− pUR

LoS (6)

Based on the above LoS and NLoS probability formulations, the path loss (PL) for the
LoS and NLoS links between the UAV-RIS and the GU u are written [33] as

PLUR
LoS = δ1

[
4π fchUR

cl

]α

pUR
LoS (7)

PLUR
NLoS = δ2

[
4π fchUR

cl

]α

pUR
NLoS (8)

where δ1 and δ2 are the PL coefficients for LoS and NLoS links, respectively, and their values
depend on the area type. The PL coefficients δ1 and δ2 vary according to the environment
type: (i) 0.1 dB and 21 dB in suburban, (ii) 1 dB and 20 dB in urban, (iii) 1.6 dB and 23 dB in
dense urban, and (iv) 2.3 dB and 34 dB in high-rise urban environments, respectively.

Moreover, fc is the carrier frequency, α is the PL exponent, and cl is the speed of light.
Furthermore, the average PL between UAV-RIS and GU u can be calculated by utilizing
(7) and (8):

PLUR
avg =

[
4π fchUR

cl

]α(
δ1 pUR

LoS + δ2 pUR
NLoS

)
. (9)

We consider UAV-mounted RIS to facilitate GUs in dense urban areas, where obstacles
block direct communication links between GBS and GUs. The channel gain of GBS-(UAV-
RIS)-GUs is expressed [34] as

G(t) = g(t)Φvgvu (10)

Here, Φ is the RIS phase shifts matrix and is denoted by

Φ = diag
[
ejθ1 , ejθ2 , . . . , ejθF

]
(11)

where θf ∈ [0, 2π], f ∈ F = {1, 2, . . . , F} is the phase shift of the Fth reflecting element.
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The channels between GUs and UAV-RIS contain both LoS and NLoS links. Using
Rician channel modeling, these channel gains are modeled as

H =
√

ηd−γ
2

(√
R

R + 1
hLoS +

√
1

R + 1
hNLoS

)
(12)

where R is the Rician fading factor, and hLoS and hNLoS are the fast fading components of
LoS and NLoS channels between UAV-RIS and GUs, respectively. γ, η, and d2 represent PL
exponent, large-scale fading, and Euclidean distance among UAV-RIS and GUs, respectively.
R-value decides whether the channel is a Rayleigh or Rician channel. When R = 0, then H
is a Rayleigh channel; otherwise, it becomes a Ricain channel. The Rician factor R = 2 is
selected to model realistic urban UAV-to-ground links where moderate LoS dominance is
observed, balancing strong direct components with multipath scattering effects. hNLoS is the
non-deterministic LoS component and is modeled as complex Gaussian distributed with
zero mean and unit variance. On the other hand, hLoS is the deterministic LoS component
and is expressed as

hLoS =

[
1, . . ., exp

(
−j

2π

λ
d(Fx − 1)

sin ϕu cos φu

)]
⊗
[

1, . . ., exp
(
−j

2π

λ
d
(

Fy − 1
)

cos ϕu

)]

where sin φu cos ϕu = xUR−xGU

d2
and cos ϕu = hUR−hGU

d2
with ϕu and φu represent the azimuth

and elevation angles of arrival of the UAV-RIS and the GU u, respectively. λ and d denote
the wavelength and antenna separation while Fx and Fy are the reflecting elements of RIS
along the X-axis and Y-axis.

We assumed LoS links from GBS to UAV-RIS and from UAV-RIS to GUs; g(t) in (10) is
the cascaded channel gain of GBS-(UAV-RIS)-GU and is calculated as

g(t) = h1ΦH (13)

where H is the UAV-RIS to GU channel gain and h1 is the GBS to UAV-RIS channel gain.
Furthermore, vg and vu in (10), respectively, are the received array vector from GBS to the
UAV-RIS and the transmit array vector from UAV-RIS to the kth GU at time t, and can be
formulated [35] as

vg =
[
e−jθ1 , e−jθ2 , . . . ..e−jθF

]
vu =

[
e−jβ1 , e−jβ2 , . . . ..e−jβF

]
Here, variable θ denotes the relative phase difference between the received signal at

the GBS and the first UAV-RIS element, while β represents the relative phase difference
among the elements of the UAV-RIS reflected beams towards the GUs.

For the sake of fairness, every user in the group is allocated the same bandwidth (B),
and each UAV-RIS in the network utilizes the same frequency band simultaneously. By
combining (4), (9), and (10), the signal-to-interference plus noise ratio (SINR) from each
UAV-RIS to GUs in the HetNet during time instant t can be expressed as follows:

ϖ =
PUR ∗ G(t)

ψ + B
(
d2 ∗ PLUR

avg ∗ σ2
) (14)
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where PUR is the transmit power of UAV-RIS to their GUs and B is the system bandwidth in
the mmWave range. ψ and σ represent the network experiences interference and additive
white Gaussian noise (AWGN), respectively. Based on Equation (14), the sum rate of GUs
could be obtained as

ΘU = Blog2(1 + ϖ) (15)

Here, ϖ represents the instantaneous SINR for each ground user, and the sum rate
expression follows the Shannon capacity formula.

3. Problem Formulation
In this article, our objective is to maximize the sum rate of GUs in urban areas by

jointly optimizing the UAV trajectory, RIS phase shift, and transmit power from UAV-RIS
to GUs. The sum rate maximization problem can be written as

max
{q,θn ,p}

∑U
u=1 Θu (16)

s.t : Θu ⩾ Θmin∀t (16a)

∑U
u=1 PUR

u ≤ PUR
max (16b)

0 ≤ θ f ≤ 2π; f = 1, . . . .F (16c)

xmin ≤ xUR ≤ xmax;
ymin ≤ yUR ≤ ymax;
hmin ≤ hUR ≤ hmax

(16d)

Constraint (16a) provides a minimum achievable rate for all GUs while guaranteeing
their QoS. Constraint (16b) ensures that the overall power transmitted by the UAV-RIS does
not exceed the maximum power transmission limit. Constraints in (16c) specify that the
RIS reflecting matrices are phase shift matrices, ensuring that all transmitted signals are
reflected without any power loss. Constraint (16d) limits UAV-RIS’s capability to fly within
a specific area, aiming to provide seamless connectivity to GUs and achieve a significant
enhancement in throughput.

The optimization problem mentioned in (16) is non-convex and difficult to solve
directly. Therefore, in the subsequent sections, we divide the original problem into two
subproblems to determine the optimal user partitioning and the best locations of UAVs,
along with the orientation of the RIS phase shift. The proposed methodology consists
of two main stages. First, users are partitioned into clusters based on both distance and
SINR levels using a modified K-means algorithm to ensure QoS satisfaction. Second, a
DDPG-based reinforcement learning model is employed to jointly optimize UAV horizontal
trajectory and RIS phase shifts, maximizing the system sum-rate while reducing HOFs and
maintaining EE under user mobility.

3.1. User Partitioning

User partitioning in mmWave and THz bands is an extremely challenging task for
enhancing throughput performance. An iterative algorithm is utilized to address optimal
user partitioning, where users are partitioned into groups based on their distances and
SINR values. The proposed modified k-mean algorithm for user grouping includes vital
modifications to the standard k-means algorithm such that it can incorporate the shortest
Euclidean distance criteria (high SINR) and the data rate constraint mentioned in (16a) for
each group independently. It offers the advantages of low complexity, easy implementation,
and fast convergence. Algorithm 1 describes the user grouping process step by step that
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may achieve faster convergence and enhance the overall mmWave system performance in
terms of HO and mobility. The proposed modified K-means algorithm enables efficient
user grouping by jointly considering both spatial distance and SINR levels, ensuring
that each cluster maintains acceptable signal quality and proximity for effective UAV-
RIS optimization. This two-stage clustering enhances the initial conditions for trajectory
and phase shift optimization, reducing handover frequency and improving link stability.
The primary advantage of this approach lies in its low computational complexity, fast
convergence, and ability to incorporate QoS constraints. However, a potential limitation is
that the initial cluster centroids may influence convergence to local optima, especially in
highly dynamic user mobility scenarios.

Algorithm 1: Proposed SINR/Distance-based User Partitioning Scheme
Input: Number of GUs, SINR threshold, sum rate threshold
Initialization: Randomly generate each user’s locations and initial data rates.

1: for every user u = 1, . . . , U do
2: Calculate Euclidean distance between the user and neighboring users.
3: Randomly assign data rate to each user using random distribution techniques.
4: Assign the user to the group with the highest SINR, minimum distance, and

maximum data rate.
5: Repeat steps 2–4 for all users in the network until convergence.
6: end for

Until Groups achieve minimal inter-user distances, highest SINR, and maximum
data rates.
Output: Optimal User Groups

The communication coverage area depends on UAV-RIS altitude; the higher the UAV-
RIS altitude, the larger the coverage area, and vice versa. The optimal coverage radius,
based on UAV-RIS altitude and beam angle in the mmWave network, can be expressed as

radius(r) = hUR ∗ tan(ϑ) (17)

where ϑ is the half beam angle in the mmWave band and hUR is the UAV-RIS height.

3.2. Joint Optimization of UAV Location and RIS Phase Shifts

To jointly optimize the UAV location and RIS phase shift in mmWave networks, a DRL-
DDPG algorithm is proposed to address the formulated problem of finding the optimal
UAV location and adjusting RIS phase shifts. The proposed DRL framework consists of a
state set s(t), an action set a(t), a reward set r(t), and UAV-RIS as an agent by the DDPG
algorithm [36]. s(t), a(t), and r(t) are clearly described as follows:

State Space: The set of spaces, including the UAV’s optimal location and RIS phase shifts,
at time t− 1 is described as

st =

θ
(t−1)
1 , . . . , θ

(t−1)
2F

RIS phase shift

| x(t−1), y(t−1), h(t−1)

UAV optimal location

 (18)

Action Space: The action space includes a UAV movement and RIS phase shifts when
transitioning from the current to the next state. The suggested approach enables the agent
to continuously determine the optimal movement while considering the long-term reward
and identify the optimal phase shift for each time instance. The agent (UAV-RIS) inputs the
state st at time step t to determine the appropriate action based on the current environment,



Drones 2025, 9, 437 10 of 21

resulting in the optimal UAV horizontal location and updated RIS phase shift to improve
connectivity and mobility issues in urban environments. The action space is expressed as

at =
[
θ
(t)
1 , . . . .θ(t)2F , x(t), y(t), h(t)

]
(19)

Reward: After performing action at in state st at time t, the agent obtains a reward rt(st, at).
Based on the objective of the paper, the sum rate per user group describes the reward and
can be written as

rt : Θ(t)
sum = ∑U

u=1 Θ(t)
u , u = 1, . . . , U (20)

The DDPG algorithm aims to determine the optimal action that maximizes the Q-value,
assessing state–action pair quality to maximize the expected commutative reward under an
optimal policy π. This approach facilitates the assessment of the agent’s actions and state
transitions based on the given state (st), action (at), and reward (rt). The proposed DDPG
algorithm adaptively optimizes the UAV location and RIS phase shifts (actions) in dynamic
mmWave urban dense environments for achieving improved signal quality (rewards). This
is accomplished by training two main networks, i.e., actor network and critic network.
The actor network suggests actions, while the critic network evaluates those actions to
enhance overall network efficiency and user experience in FWNs. Algorithm 2 summarizes
the proposed DDPD algorithm, while Figure 2 depicts the flow diagram of the proposed
scheme for optimizing the UAV location and RIS phase shift to achieve improved network
performance. The flow diagram illustrates the interaction between the UAV-RIS system
and the DDPG learning agent. The UAV-RIS observes environmental states, including user
positions and channel conditions, and takes joint actions of UAV positioning and RIS phase
adjustments. These actions yield corresponding rewards based on system performance.
The agent stores transition tuples (st, at, rt, st+1) into the experience replay buffer, which are
sampled as mini-batches to train the actor and critic networks. The critic network evaluates
the Q-value of actions, while the actor network updates its policy through gradient ascent.
Target networks are softly updated to stabilize learning.

UAV-RIS

Environment
Agent Experience Replay Buffer

                      Transition 
 

1, , ,t t t ts a r s +

Mini-Batch Weigh Vector

Updating

Q-Value

Actor Network Critic Network Actor Network Critic Network 

Training Network Target Network 

Policy Gradient Loss Function

Updating

Q-Value

Updating

Q-Value

Actor Network Critic Network Actor Network Critic Network 

Training Network Target Network 

Policy Gradient Loss Function

Updating

Q-Value

Reward 
Feedback
Reward 

Feedback

State 
Interaction

State 
Interaction

a a

Figure 2. Flow diagram of the proposed DDPG algorithm.

The step-by-step explanation of the Algorithm 2 is as follows:
The algorithm initializes several key components, including a replay buffer D for

storing learning experiences, a discount factor γ to weigh future rewards in the learning
process, and a soft update coefficient τ for updating target networks, and it sets the
minibatch size NB for determining sample transitions from D during training. Additionally,
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actor and critic networks µ(s|θµ) and Q(s, a|θQ) are initialized with their respective weights
θµ and θQ, respectively. To facilitate stable training, the target networks µ′ and Q′ are
initialized with weights θµ′ ← θµ and θQ′ ← θQ.

Algorithm 2: Proposed DDPG Algorithm for Joint Optimization of UAV Location and

RIS Phase Shifts
Initialization:
• Replay buffer D, discount factor γ, soft update coefficient τ, and the minibatch size NB

• Actor network µ(s|θµ) with weights θµ, critic network Q(s, a|θQ) with weights θQ, target
networks µ′ and Q′ with weights θµ′ ← θµ and θQ′ ← θQ

1: for episode m, . . . , M do
2: Get the initial observed state st (18)
3: Initialize the random process N for action exploration
4: for each time step t = 1, . . . , T do
5: Select action at = µ(st|θµ) +Nt based on the current policy and exploration noise
6: Execute the actions at and observe reward rt and new state st+1

7: Store transition (st, at, rt, st+1) in replay buffer D
8: Sample the random NB mini-batch transitions (st, at, rt, st+1) from D
9: Calculate target Q-value by zt = rt(st, at) + γQ′(st+1, µ′(st+1|θµ′ )|θQ′ )

10: Update critic by minimizing the loss:

L =
1

NB

NB

∑
t
(zt −Q(st, at|θQ))2

11: Update the actor policy using the sampled policy gradient:

∇θµ M ≈ 1
NB

∑∇aQ(s, a|θQ)|s=st ,a=µ(st)∇θµ µ(s|θµ)|st

12: Update the target networks:

θQ′ ← τtcθQ + (1− τtc)θ
Q′

θµ′ ← τtaθµ + (1− τta)θ
µ′

13: st ← st+1

14: end for
15: end for

In step 2, the algorithm obtains the initial observed state st of the environment by
utilizing equation (18). In step 3, the DDPG algorithm initializes noise N to facilitate the
agent in achieving a better action and state exploration. In step 5, the agent selects an
action at based on the current policy, represented by actor network µ(st|θµ), while adding
exploration noise N to encourage a broader exploration of the action space. This approach
allows the agent to discover a wider range of actions during training, thereby improving
its ability to learn an optimal policy. Next, in step 6, the agent performs the selected action
at in the environment, observes the resulting reward rt, and transitions to the next state
st+1. This step is important for learning from environmental feedback and refining the
agent’s policy.

In step 7, the algorithm stores the current state, action taken, reward received, and
next state observed in the replay buffer D to retain experiences for learning. To train the
neural networks, step 8 involves randomly selecting a mini-batch of NB transitions from D,
based on the current state, action, reward, and next state.

In step 9, the algorithm calculates the target Q-value (zt) using the Bellman equation.
Here, rt(st, at) is the observed reward after taking at from st, while Q′(st+1, µ′(st+1|θµ′)|θQ′)

denotes the target Q-value for next state st+1. Moving forward, step 10 computes the loss
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function L, which measures the difference between the target Q-value (zt) and training
Q-value Q(s, a|θQ) [37]. This ensures an accurate Q-value estimation and maintains stability
throughout the training process. In step 11, the actor policy is updated using a sampled
policy gradient, which links the action-value function Q(s, a|θQ) to the actor’s actions
µ(s|θµ), aiming to maximize expected returns computed across a mini-batch of transitions
for stable learning. Subsequently, in step 12, the target critic network θQ′ and target actor
network θµ′ are updated by adjusting their weights towards the main networks θQ and θµ,
respectively. τtc and τta represent the learning rates for the target critic and actor networks’
soft updating coefficient, respectively, where τtc, τta ≪ 1. The utilization of soft updating
prevents the instability and divergence issues typically associated with Q-learning.

Finally, in step 13, the algorithm assigns the next state value st+1 to the current state st at
each time step of an episode during training, effectively updating the current state variable.
Steps 5 to 13 are repeated for all time steps t = 1, . . . T within an episode to ensure effective
learning through experience replay and updates to both the actor and critic networks. The
proposed DDPG-based algorithm efficiently handles the continuous action space of joint UAV
trajectory and RIS phase shift optimization in dynamic urban environments. Its primary
advantage is the ability to learn optimal policies through continuous interaction with the
environment without requiring a full system model. This allows for adaptive and real-time
optimization under complex mobility and blockage conditions. Additionally, DDPG stabilizes
learning using experience replay and target networks, ensuring robust convergence. However,
its limitations include a higher computational complexity compared to classical optimization
methods, sensitivity to hyperparameter tuning, and potential convergence instability under
extremely sparse or highly dynamic training scenarios.

4. Numerical Results and Analysis
In this section, we evaluate the effectiveness of the proposed UAV-RIS framework

and the DDPG scheme through extensive simulation in terms of EE, HOF, throughput,
OP, and LoS probability in an mmWave network. The proposed scheme classifies users
according to distances and SINR values while jointly optimizing the UAV trajectory and
RIS phase shifts to ensure uninterrupted connectivity for GUs in urban environments.
To validate the proposed scheme, we compared it with UAV-only, RIS-only, and without
UAV-RIS deployments.

4.1. Scenario Setup

Simulations were conducted using MATLAB R2022b on an X-64 processing system
with an Intel(R) Core(TM) i7-10510U CPU running at 2.30 GHz and 12 GB RAM. The
height, speed, carrier frequency, and transmit power of the UAV-RIS were chosen based
on operational standards and 3GPP recommendations. These selections aimed to ensure
the relevance of the simulation results to urban scenarios. The urban environment was
modeled with varying building area ratio (0.1 to 0.5), number of buildings (750/km2 to
300/km2), and average building height (8 m to 50 m), impacting the signal blockage and LoS
availability. The simulation considered different street widths, building distributions, and
RIS configurations to reflect real-world challenges such as mobility and dynamic obstacles.
The modified K-means algorithm incorporates both spatial proximity and SINR constraints.
After initial spatial clustering based on Euclidean distance, SINR and achievable rate
thresholds are applied within each cluster to maintain service quality. The algorithm
iteratively refines cluster centroids until the cluster memberships stabilize with minimal
changes, ensuring convergence. Table 2 summarizes the simulation parameters used in
the study.
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Table 2. Simulation Parameters.

Parameter Value

Maximum UAV-RIS speed 72 km/h

Maximum UAV-RIS height 500 m

Carrier frequency 100 GHz

Bandwidth 10 GHz

No. of randomly distributed GUs 50

GUs speed 3 km/h

GBS to GU transmit power 40 dBm

UAV-RIS to GU transmit power 30 dBm

PL exponent for LoS and NLoS links 2, 3

GBS antenna spacing d = λ
2

Rician factor (R) 2

Discount factor 0.9

Hidden layers 2

Training networks’ learning rate 0.001

Target networks’ learning rate 0.001

Number of RIS elements 100, 200, 300

RIS elements spacing (vertical and
horizontal)

λ
4 = 0.75 mm

Number of episodes 6000

Number of steps per episode 2000

Experience replay buffer size 150,000

Mini-batch size 128

4.2. Simulation Discussion and Comparison

Figure 3 compares the performance of the proposed UAV-RIS framework with three
scenarios in terms of EE. The simulation results depict that the proposed framework
is more energy-efficient than other benchmarks, as it reduces the energy required for
signal transmission and enhances the overall performance of the FWNs. The UAV-only
deployment consumes more energy than the RIS-only deployment at all altitudes due
to the additional energy required for flight, mobility, and communication. The detailed
analysis of the UAV-RIS framework reveals that its EE improves with increasing altitude.
This is due to the higher elevation angle between the UAV-RIS and GUs, which reduces
obstructions from buildings and other obstacles. Consequently, the LoS probability and the
Rician factor increase, strengthening the channel gain and improving SINR. However, EE
decreases when the UAV-RIS exceeds a certain altitude, as the increased distance to GUs
leads to a higher path loss, ultimately degrading system performance.

The impact of the number of GUs on EE is shown in Figure 4. The simulation outcomes
clearly indicate that the system’s EE increases with the number of GUs. The proposed
DDPG-based UAV-RIS system outperforms the other three setups, primarily due to the joint
optimization of UAV mobility and RIS phase shift adjustments, which enhance signal qual-
ity and reduce interference, particularly in dense urban environments. For instance, when
there are 30 users, the UAV-RIS framework achieves gains of 40%, 31.4%, and 20% compared
to the system without UAV-RIS, the RIS-only, and the UAV-only deployment, respectively.
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Figure 3. EE comparison of UAV-RIS scheme with benchmarks.

Figure 4. EE vs. number of users.

The hybrid UAV-RIS deployment is optimal for achieving superior system perfor-
mance in terms of HOF and EE in urban environments. Figure 5 illustrates the effect of
various altitudes on HOF for the three configurations: active UAV-RIS, passive UAV-RIS,
and hybrid UAV-RIS. It is obvious from the simulation outcomes that at higher altitudes,
the active UAV-RIS achieves better performance in reducing HOF because of its ability to
amplify and direct the signals to the desired GUs, maintaining reliable connectivity. In
contrast, passive UAV-RIS tends to increase the HOF probability at higher heights, as it
has the property of reflection only without dynamic adjustment or amplification. This
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results in a poor signal strength over greater distances between the UAV-RIS and GUs.
Finally, the performance of the hybrid UAV-RIS, which falls between active and passive
configurations is analyzed, resulting in a moderate HOF rate across different altitudes.
Furthermore, Figure 5 demonstrates that the HOF performance of the hybrid UAV-RIS
improves as the number of active elements increases. It reaches the performance level of a
fully active RIS-UAV when the number of active elements in the hybrid UAV-RIS equals the
total number of elements. Simulation results indicate the superior efficiency of the active
UAV-RIS among all configurations in HOF, especially at higher altitudes.

Figure 5. HOF vs. UAV-RIS configurations.

Figure 6 shows the throughput comparison between the proposed framework and
other benchmarks. The simulation results reveal that the proposed UAV-RIS framework
outperforms all others, even at higher altitudes, by dynamically optimizing signal paths and
enhancing coverage through UAV positioning and RIS adjustment. The GBS (without UAV-
RIS system) delivers satisfactory throughput at lower altitudes but becomes less effective
at higher altitudes, making it unsuitable for high-altitude scenarios without UAVs or RIS
support. For instance, at 300m height, the proposed UAV-RIS framework achieved 34.48%
and 92.8% gains in throughput compared to UAV-only and RIS-only setups, respectively. In
contrast, without the UAV-RIS framework, the throughput loss was approximately 66.67%.
Overall, the suggested UAV-RIS framework provides the most robust solution to maintain
improved throughput across various altitudes.

Increasing the number of GUs in urban environments requires careful optimization of
the UAV’s altitude and RIS elements. Higher UAV altitudes improve LoS but increase path
loss, requiring more RIS elements to maintain signal quality. Figure 7 shows the impact
of different UAV altitudes and RIS elements on HO outage probability. Each RIS element
actively reflects incident signals with varying phase shifts, and its performance depends
on the relative positions of the UAV and the GUs. The simulation results demonstrate
that dynamic optimization through the proposed UAV-RIS framework, utilizing the DDPG
algorithm, effectively balances connectivity and HO performance in urban dense envi-
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ronments. For instance, at a UAV altitude of 350 m with 300 RIS elements, the proposed
scheme reduces the OP by 20% compared to the scenario without DDPG.

Figure 6. Throughput vs. altitude.

Figure 7. Impact of UAV altitude and RIS elements on OP.

Figure 8 illustrates the OP as a function of distance for UAV-to-ground communication.
In the without-UAV-RIS configuration, the OP is relatively high, especially as the distance
increases. The RIS-only configuration achieves a moderate reduction in OP by reflecting
signals to improve connectivity in LoS-blocked areas, but its effectiveness is limited over
longer distances. The UAV-only configuration further reduces the OP by dynamically ad-
justing the UAV positions to maintain LoS links. However, challenges in HOF and mobility
management persist due to UAV movement. The UAV-RIS configuration demonstrates
superior performance in reducing OP by integrating UAV mobility with RIS optimization.
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The proposed UAV-RIS system dynamically adjusts the UAV positioning and RIS phase
shifts, leading to significant improvements in throughput, EE, and LoS probability.

Figure 8. OP vs. distance for UAV-to-ground communication.

Figure 9 shows the LoS probability as a function of distance for UAV-to-ground
communication in an urban environment, comparing four configurations: without UAV-RIS,
RIS-only, UAV-only, and UAV-RIS. The without-UAV-RIS setup experiences a rapid decrease
in LoS probability as distance increases. The RIS-only scenario improves performance but
still shows a decreasing trend with distance. The UAV-only deployment, compared to
the RIS-only and without-UAV-RIS scenarios, provides a better LoS probability due to the
UAV’s dynamic positioning. It is evident from the simulation outcomes that the proposed
UAV-RIS setup achieves the highest LoS probability by combining UAV mobility and RIS,
ensuring improved connectivity across all distances. This highlights the effectiveness of
UAV-RIS in maintaining seamless connectivity and overcoming LoS blockages, leading to
enhanced throughput in urban environments.

The convergence and stability of the proposed DDPG-based UAV-RIS framework
are critical for reliable deployment in dense urban environments. Figure 10 shows the
cumulative reward convergence under varying hyperparameters. The baseline setting
(κ = 0.001, τ = 0.001) achieved stable convergence after 1500–2000 episodes. Increasing the
learning rate (κ = 0.002) accelerated the convergence but increased the reward variance
due to aggressive updates. Lowering the learning rate (κ = 0.0005) yielded slower but
smoother convergence. A high learning rate (κ = 0.01) resulted in instability and oscilla-
tions. Reducing the soft update coefficient (τ = 0.0005) further stabilized convergence by
smoothing target network updates. In contrast to the above works, the proposed DDPG-
based UAV-RIS framework jointly optimized the UAV trajectory, RIS phase shifts, and user
mobility management via modified K-means clustering to address HOFs, LoS connectivity,
and energy-efficient deployment in dense urban scenarios.
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Figure 9. LoS probability vs. distance for UAV-to-ground communication.

Figure 10. Convergence behavior of the proposed DDPG-based UAV-RIS optimization framework
under different learning rates κ and soft update coefficients τ.

The proposed DDPG-based UAV-RIS framework demonstrated performance across
multiple key metrics. Specifically, the integration of UAV mobility with RIS phase adap-
tation significantly reduced HOF probability and OP while improving throughput and
energy efficiency in dense urban environments. The simulation results confirm the robust-
ness of the proposed approach in dynamically handling user mobility, LoS blockages, and
urban propagation impairments, validating the effectiveness of joint UAV trajectory and
RIS phase shift optimization under practical deployment conditions.

5. Conclusions and Future Work
The integration of RIS and UAVs is anticipated to enhance wireless network coverage,

create additional propagation paths around obstacles, and establish LoS links with distant
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GUs, making it a promising technology for FWNs. This study investigated the performance
of various frameworks and demonstrated that the proposed UAV-RIS framework, utilizing
the DDPG scheme, outperformed the benchmarks in improving connectivity and through-
put for GUs. The integration of UAV-RIS with the DDPG-based scheme leads to a significant
improvement in addressing the challenges posed by high-mobility scenarios in FWNs. The
proposed framework effectively improves LoS probability to GUs by reducing path loss,
which is crucial for maintaining reliable communication in urban dense environments.
Furthermore, the proposed DDPG algorithm, through the training of two main networks
(actor network and critic network), adaptively optimizes the UAV trajectory and RIS phase
shifts for enhancing the LoS link and achieving improved signal quality for GUs while
transitioning between cells. The simulation results demonstrated that the proposed DDPG-
based UAV-RIS framework achieved significant performance improvements. Specifically,
the proposed scheme reduced HOF probability by up to 15% compared to a UAV-only
deployment. The EE was improved by approximately 40% over baseline scenarios with
increasing user densities. Throughput gains of 34.5% and 92.8% were observed compared
to UAV-only and RIS-only systems, respectively, at a 300 m altitude. Additionally, the
OP was reduced by up to 20% at higher RIS element configurations. These quantitative
improvements validate the effectiveness of the proposed joint optimization approach for
urban dense UAV-RIS deployments.

Future Work

The limited battery life of UAVs and the number of RIS elements can affect the
communication performance of GUs in urban scenarios. Additionally, the computational
complexity of the DDPG algorithm and reliance on UAVs may limit real-time operations and
EE. Future work will address these challenges by optimizing UAV lifetime and the number
of active RIS elements to improve EE and reduce HOF through strong LoS connectivity.
Furthermore, we will explore multiple UAV-RIS systems and investigate the potential of
simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RIS)
to enhance GU mobility in dense urban areas.
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