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ABSTRACT

Due to the high capability of learning robust features, con-
volutional neural networks (CNN) are becoming a mainstay
solution for many computer vision problems, including aes-
thetic quality assessment (AQA). However, there remains the
issue that learning with CNN requires time-consuming and
expensive data annotations especially for a task like AQA.
In this paper, we present a novel approach to AQA that in-
corporates self-supervised learning (SSL) by learning how to
inpaint images according to photographic rules such as rules-
of-thirds and visual saliency. We conduct extensive quantita-
tive experiments on a variety of pretext tasks and also differ-
ent ways of masking patches for inpainting, reporting fairer
distribution-based metrics. We also show the suitability and
practicality of the inpainting task which yielded comparably
good benchmark results with much lighter model complexity.

Index Terms— Aesthetic quality assessment, CNN, self-
supervised learning, image inpainting, photographic rules

1. INTRODUCTION

With the advancement of mobile camera technology and the
growth of social media, online photo sharing has become an
increasingly popular phenomenon. As such, personal gal-
leries or media retrieval systems are also inundated with a
massive deluge of images; many which could be of poor qual-
ity or lack in appeal. The growing interest in aesthetic quality
assessment (AQA) in recent years [1, 2, 3] is testament of the
need to automate the process of selecting or sorting out im-
ages from the perspective of aesthetic appeal.

In the early days, most of the works that proposed for
AQA were designing hand-crafted features that correspond to
known aesthetic principles such as low-level features that are
based on photographic rules [4], and SIFT or color descrip-
tors [5]. With the success of deep learning, researchers started
to use CNN-based models in their works [6, 7, 3, 1, 8], and
these methods easily outperform the handcrafted methods by
a significant margin.

Although work on AQA using deep learning techniques
outperformed most traditional feature extraction methods, the
initial data collection and annotation works are most essential
to the success of using a heavily supervised method like CNN.

Fig. 1. Image inpainting according to photographic rules as a
self-supervised learning (SSL) pretext task for AQA.

This is particularly challenging and expensive for a subjective
task like AQA as opinions need to be collected from many
professional photographers to provide useful ratings of the
aesthetics of an image. Self-supervised learning (SSL) offers
a new paradigm towards learning visual features from an un-
labeled dataset on a pretext task (with pseudo labels) before
transferring to (the actual) downstream supervised prediction
task. In recent years, works like [9, 10, 11, 12, 13] proposed
different SSL pretext tasks trained on ImageNet [14], which
reported strong capabilities at various downstream tasks.
Hence, we are motivated to design a viable SSL pretext task
that can incorporate photographic rules for to better under-
stand image aesthetics. By teaching the machine to inpaint
portions of the image that corresponds closely to aesthetic
concepts, we hypothesize that the model will also learn in-
trinsic knowledge and features of these concepts, which in
turn, can perform the AQA task well.

In this paper, we propose a novel approach to AQA by
incorporating SSL based on image inpainting. The main con-
tributions in this work are as follows:

1. We propose new ways of performing image inpaint-
ing based on compositional rules (rule of thirds, visual
saliency) as a self-supervising pretext task for the CNN
before transferring to the downstream supervised AQA
task.
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2. We demonstrate that using SSL can work reasonably
well for AQA, matching close to the performance of
most state-of-the-art deep learning methods, with a
smaller dispersion in correlation.

3. We provide a comprehensive benchmark (including
network complexity) for a variety of pretext tasks,
highlighting the capability of our lightweight model,
which garnered comparable results against heavier
methods.

2. RELATED WORK

AQA. Works in AQA can generally be divided into two cate-
gories – (1) classical handcrafted low-level features based on
photography rules or using image descriptors, and (2) meth-
ods that leverage deep learning models (e.g. CNN).

In the first category, AQA involved designing hand-
crafted features that correspond to known aesthetic principles
such as the composition of an image, sharpness, saturation
and the contrast levels of an image, and the use of basic photo-
graphic rules e.g. rule-of-thirds, etc. Well-known early works
are like [4, 5] extracted low level features or color/shape
based descriptors and train with standard machine learning
classifiers or regressors.

In the second category, deep learning models, particu-
larly CNNs have made a huge impact in many image process-
ing tasks such as image classification and object detection,
largely due to their powerful ability to learn different hierar-
chies of spatial features from images. Works like [6, 15] even
proposed to use more than one CNN to learn from different
types/scales of visual features from images for AQA. A num-
ber of recent works [7, 3] attempt to change the structure of
InceptionNet [16] in particular to learn local and global fea-
tures of images. [17] trained a Siamese network to encode
images into a visual aesthetics space. Besides, [18] incorpo-
rated adaptive spatial pyramid pooling to input images of any
resolution to make better predictions. Our work is inspired
by the recent work of [1], which modified the standard clas-
sification loss function to Earth Mover Distance (EMD) loss
and achieved relatively good performance without the need
for sophisticated architectures.
SSL. Self-supervised learning (SSL) comes across as a vi-
able learning technique which leverages on pretext tasks
trained when labels are scarce. Across recent literature [19],
there are four known categories of pretext tasks for SSL:
generation-based, context-based, free semantic label-based
and cross modal-based. Of the four, the generation-based and
context-based methods are the most relevant to this work as
they focus on the generation of pixels and the structure of
objects in image, tasks which have affinity with the concept
of aesthetics in images. Context-based methods [12, 11, 13]
allow CNNs to learn useful visual features by learning how to
identify angles and arrangement (spatial structure) of objects

Fig. 2. Illustration of the architecture for image inpainting.

or patches in images. Meanwhile, generation-based methods
like [20, 9, 10] enable CNNs to learn visual features from
unlabeled images via synthesis, inpainting and colorization
tasks.

3. METHODS

Motivated by the work of Pathak et al. [9], we introduce a
number of new ways of performing image inpainting pre-
text task based on Generative Adversarial Networks (GAN)
by incorporating compositional photographic rules to enable
the learning of context and structure in images. This forms
the main intuition behind the idea of “learning aesthetics by
learning inpainting” – the computer basically learns the sub-
jective concept of aesthetics by learning to fill in removed
patches. During the pretext task, the generator network is to
inpaint the image on the patches masked based on composi-
tional rules while the discriminator network acts to differen-
tiate between the actual and generated patches. Hence, upon
transfer to the downstream AQA task, the discriminator inher-
ently understands the areas (where the patches are) to focus
on when predicting the aesthetic quality level of images.

3.1. Compositional Image Inpainting as Pretext Task

To enable the CNN to learn visual features from with a sense
of photographic rules, we designed several feasible image in-
painting methods as pretext tasks for the SSL process. Specif-
ically, we designed 3 new ways of performing image inpaint-
ing based on photographic compositional rules such as rule-
of-thirds and visual saliency by altering the masking area.
Masking Area for Image Inpainting. Fig. 3 shows the
different ways of masking patches for the inpainting pretext
task. The white square areas indicate the masking areas for
the generator to generate and for the discriminator to differ-
entiate in the learning process. The leftmost image is the
original image. The center cropped (CC) area is the origi-
nal masked patch used in [9]. We propose to mask off parts
of the image that corresponds closely to some photographic
rules. Four Power Points (FPP) uses rule-of-thirds to obtain
the four power points of the image, and we apply masking on
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Fig. 3. Different ways of masking patches for image inpainting: rule-of-thirds (FPP), visual saliency (HSA) or both (HSP).

32×32 square areas on each power point. For Highest Salient
Area (HSA), we take the point with the highest saliency value
(using the method by [21]) as center point and apply masking
on a 64 × 64 square area. Lastly, for Highest Salient Power
point (HSP), we fixed 4 areas in the image – each a 64× 64)
square area centered at each power point, and compute the
sum of saliency values. Masking is applied on the area with
the highest total saliency.
Generative Adversarial Network. The pretext image in-
painting task is first trained using GAN before transferring
its discriminator network to the downstream AQA task [5].
Typical GAN architectures consists of two networks: G and
D, in a two-player minimax game where G tries to generate
image patches that look as close as possible to the real image
patch while D tries to distinguish between a generated image
patch and a real image patch:

min
G

max
D

log(D) + log(1−D(G)) (1)

The GAN architecture that is used in this work is motivated
by that of [9], but with modifications to its loss functions.
Generator. The generator G consists of 6 convolutional lay-
ers (leaky ReLU as activation function), followed by 4 trans-
posed convolutional layers (ReLU as activation function) and
ending with another convolutional layer (Tanh as activation
function). We implement the loss function of the generator in
our work as a weighted combination of adversarial loss and
pixel-wise loss.

The adversarial loss measures the extent of which the gen-
erator fools the discriminator. Here, the mean squared error
(MSE) is a feasible measure that can be minimized, where
Imp indicates a full image with masked patches, True indi-
cates true values (1s) and False indicates false values (0s):

min
G

LG,adv = MSE(D(G(Imp)), T rue) (2)

In the inpainting task, the contribution of this loss must be set
to a low value to allow gradual perturbations to the generated
patch.

Meanwhile, the pixel-wise loss measures how close are
the real values of a full image X to the generated image G
with L1 loss:

min
G

LG,pw = L1(G(Imp), X) (3)

The overall loss function of the generator is given by:

min
G

LG = λadv ∗ LG,adv + λpw ∗ LG,pw (4)

where λpw = 1- λadv balances the contributions of both losses.
Discriminator. The discriminator D network consists of 5
convolutional layers, with the first 4 convolutional layers at-
tached with leaky ReLU as activation function. The loss func-
tion for D measures how much the discriminator is able to as-
certain the correctness of the sample (i.e. a true sample being
true, a fake sample being fake) based on MSE loss:

LD,real = MSE(D(X), T rue) (5)

LD,fake = MSE(D(G(Imp)), False) (6)

The overall loss function of the discriminator:

LD = λdis ∗ LD,real + (1− λdis) ∗ LD,fake (7)

In this set up, both G and D are jointly optimized concur-
rently using Adam [22]. The balancing parameters are set to
λadv = 0.001, λpw = 0.999 as in [9] while λdis = 0.5.

3.2. Downstream Supervised AQA Task Training

After training the GAN on the pretext task (image inpainting)
to good convergence, the discriminator network is transferred
over to the downstream supervised AQA task. In this second
training, we use the AVA: A Large-Scale Database for Aes-
thetic Visual Analysis [5] which is popularly used as a AQA
benchmark. The transferred network is appended with fully
connected layers. We proceed to fine-tune the CNN (discrim-
inator) on AVA to predict the probability distribution score of
the images using EMD loss proposed by [1].

4. EXPERIMENTAL RESULTS

We train our pretext tasks using the large-scale AVA dataset [5]
which contains around 250K images which were crawled
from a popular photography community DPChallenge1 where
each image was rated by an average of 210 photographers
with a score ranging from 1 to 10.

For the AQA task, a fully-connected layer (randomly ini-
tialized) is added at the end of the SSL-trained CNN with
a dropout rate of 0.75. Training was performed using Adam
[22] optimizer with the learning rates of the convolutional lay-
ers and the last FC layer set to 10−5 and 10−4, respectively.
The models presented in this paper are all implemented using
PyTorch. Code and models are available2 for public use.

1www.dpchallenge.com
2https://github.com/chingjunehao/SSL-Inpainting-AQA
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Architecture No. Params. Pretext task pre-trained on Accuracy↑ LCC↑ SRCC↑ LCC SRCC EMD↓
(2 classes) (mean) (mean) (std.dev) (std.dev)

NIMA-AlexNet 2.56M - ImageNet 79.89% 0.522 0.498 0.191 0.185 0.0509
NIMA-VGG16* 14.96M - ImageNet 81.13% 0.598 0.576 0.219 0.209 0.0477
AlexNet 57.05M RotNet ImageNet 79.00% 0.423 0.408 0.166 0.160 0.0535
VGG16 14.97M Colorization ImageNet 80.93% 0.501 0.476 0.179 0.168 0.0506
Resnet152 58.16M Colorization ImageNet 80.72% 0.543 0.514 0.203 0.194 0.0498
VGG16 14.97M Colorization AVA 80.55% 0.510 0.484 0.185 0.175 0.0507
Generator-FPP 3.07M Inpainting AVA 79.10% 0.271 0.263 0.104 0.099 0.0570
Generator-HSP 3.07M Inpainting AVA 79.43% 0.404 0.390 0.165 0.157 0.0536
Discriminator-CC 1.56M Inpainting AVA 80.31% 0.428 0.402 0.109 0.100 0.0527
Discriminator-HSP 1.56M Inpainting AVA 79.77% 0.428 0.404 0.150 0.141 0.0533
Discriminator-HSA 1.56M Inpainting AVA 80.23% 0.452 0.426 0.139 0.128 0.0523
Discriminator-FPP+CC 3.12M Inpainting AVA 80.26% 0.506 0.482 0.161 0.149 0.0510
Discriminator-FPP 1.56M Inpainting AVA 80.43% 0.520 0.494 0.171 0.160 0.0504

Table 1. Performance comparison with methods pre-trained on different SSL pretext task (2nd and 3rd section) before transfer-
ring to the supervised downstream task, or direct supervised learning (1st section). The AQA task is trained using the method
proposed by [1]. Other notations: ∗: reproduced in this paper. +: concatenation of features after 5th conv layer. M: million.

Model Accuracy LCC SRCC LCC SRCC EMD
(2 classes) (mean) (mean) (std.dev) (std.dev)

Murray et al. [5] 66.70% - - - - -
Lu et al. [6] 74.46% - - - - -
Hii et al. [7] 75.76% - - - - -
Schwarz et al. [17] 75.83% - - - - -
Wang et al. [15] 76.80% - - - - -
Murray et al. [18] 80.30% - 0.709 - - -
Talebi et al. [1] 81.51% 0.636 0.612 0.233 0.218 0.0500
Hosu et al. [23] 81.72% 0.757 0.756 - - -
Zhang et al. [2] 81.81% 0.704 0.690 - - 0.045
Jin et al. [3] 82.66% - - - - -
Ours (SSL-D-FPP) 80.43% 0.520 0.494 0.171 0.160 0.0504

Table 2. Performance comparison against state-of-the-art
methods on AVA. We report the performance of the best meth-
ods that are reported in their respective works.

4.1. Results and Discussion

Table 1 compares the performance of various pretext tasks,
particularly different configurations of our proposed inpaint-
ing scheme. Results indicate the viability and practicality of
learning an inpainting task to learn robust features for AQA.

We achieved the best all-rounded result on Discriminator-
FPP setting with an EMD that is comparable to a standard
NIMA [1] on AlexNet. The performance of Discriminator-
FPP is also comparable to other SSL pretext tasks evaluated
(RotNet [11], Colorization [10]) but with much lesser com-
plexity in terms of parameters, i.e. Resnet152 (37x larger),
VGG16 (9.5x larger). Given that the size of ImageNet is
around 60x larger than AVA, SSL models pre-trained on it
performed marginally better expectedly, but our results show
the sufficiency of AVA for the purpose of AQA. Table 2 sum-
marizes the performance of our preliminary attempt at SSL
in comparison with several benchmark methods on AVA. We
hope this work spurs future directions towards SSL methods.

It is worth noting that transferring the generator network
also did not work as well as with the discriminator network.

Note also that we had attempted to fine-tune the ImageNet
pre-trained inpainting model which was released by [9] for
the purpose of benchmarking but the AQA training did not
converge properly using the EMD loss function.

On evaluation metrics. The evaluation metric that is
most commonly reported by the AQA community on AVA
is a standard 2-class accuracy, which has been found to be
sorely lacking [18, 1] due to class imbalance issues, i.e. AVA
has over 180k of positive labels (good images) and only 74k
of negative labels (bad images) if rating 5 is considered as the
boundary. Therefore, [1] proposed to include distribution-
based metrics such as linear correlation coefficient (LCC)
between the mean and standard deviation of distributions,
Spearman’s rank correlation coefficient (SRCC) between the
mean and standard deviation of distributions, and the EMD
between distributions. In this paper, we reported all 6 evalua-
tion metrics initiated by [1] for all conducted experiments.

Pre-training on other AQA datasets. Besides compar-
ing the performance of models that were pre-trained on Im-
ageNet and AVA, we also ran an experiment by pre-training
Discriminator-FPP with image inpainting as SSL on a bigger
dataset called AROD[17] before transferring back to AQA on
AVA. The result was not as good as pre-training on AVA, with
an accuracy of 80.47%, LCC (mean) of 0.449, SRCC (mean)
of 0.412 and EMD of 0.526.

5. CONCLUSION

In this paper, we propose new image inpainting methods that
abide by common photographic rules (rule-of-thirds and vi-
sual saliency) as self-supervisory signal for aesthetic quality
assessment. We demonstrate the notion that we can teach a
machine to understand aesthetic appeal by learning how to fill
up salient areas of a photograph. Our comprehensive experi-
ments show the feasibility of exploiting an unlabeled dataset
to achieve comparable results at lesser complexity.
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