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a b s t r a c t

This paper studies Langevin equationwith randomdamping due tomultiplicative noise and
its solution. Two types ofmultiplicative noise, namely the dichotomous noise and fractional
Gaussian noise are considered. Their solutions are obtained explicitly, with the expressions
of the mean and covariance determined explicitly. Properties of the mean and covariance
of the Ornstein–Uhlenbeck process with random damping, in particular the asymptotic
behavior, are studied. The effect of the multiplicative noise on the stability property of the
resulting processes is investigated.
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1. Introduction

Studies of harmonic oscillator with randomly varying parameters dated back several decades ago. Disordered linear
oscillator chain with random frequency or random mass was first considered by Dyson in 1953 [1]. Oscillator with random
parameters has been studied in subsequent work [2–6]. Since then, a considerable amount of work covering oscillator with
random frequency, randomdamping and randommass has appeared. A comprehensive review of the pastwork can be found
in the book by Gitterman [7, and references therein].

Motivations for studying oscillators with fluctuating parameters come from their potential applications in modeling
many natural andman-made systems. Brownianmotion of a harmonic oscillator with randommass has been used to model
systems where particles of the surrounding medium not only collide with Brownian particles, they can also adhere to them.
Examples of such applications include diffusion of clusters with randomly growing masses [8,9], planet formation by dust
aggregation [10–12], cluster dynamics during nucleation [13], growth of thin film [14], deposition of colloidal particles on
an electrode [15], traffic flow [16,17], stock market prices [18,19], etc.

An oscillator in addition to the possibility of having randommass, it can also acquire fluctuating frequency. The influence
of the fluctuating environment such as the presence of colored noise and viscosity can be reflected in fluctuating damping
termor randomoscillator frequency. Examples of applications of such processes include propagation and scattering ofwaves
in a random medium [5,20] and turbulent ocean waves, low amplitude wind-driven waves on the ocean surface [21–23],
financial markets in econophysics [24] and population dynamics in biology [25–27]. Recently, oscillator with fluctuating
frequency has been used in the study of nano-mechanical resonators, where frequency fluctuations are resulted from
molecules randomly adsorbing and desorbing onto or from the resonator, or diffusing along its surface [28–33].
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The equations that describe one-dimensional Brownian motion of a free particle in a fluid are given by

dx(t)
dt

= v(t), (1a)

m
dv(t)
dt

+ γ v(t) = η(t). (1b)

Here m is the particle mass, and γ is the dissipative parameter of the viscous force of the fluid, and η(t) is the random
force due to the density fluctuation of the surrounding medium. (1a) and (1b) are known as the Langevin equations for the
Brownian particle. The random force for the usual Langevin equation is given by the Gaussian white noise with zero mean
and covariance⟨

η(t)η(s)
⟩
= δ(t − s). (2)

Note that (1b) is also known as the Langevin equation for the Ornstein–Uhlenbeck velocity process v(t).
For the Brownian motion of a damped harmonic oscillator driven by white noise, one has

m
d2x(t)
dt2

+ γ
dx(t)
dt

+ ω2x(t) = η(t), (3)

where ω is the intrinsic oscillator frequency. If the viscous damping force −γ v(t) is much larger than the inertial term
md2x/dt2 in (3) such that to a good approximation the first term in (3) can be neglected. Such an overdamped limit results
in a stochastic differential equation for the position x(t):

dx(t)
dt

= −µx(t) + ζ (t), (4)

where µ = ω2/γ , and ζ (t) = η(t)/γ . Eq. (4), which has the same form (except for the constant parameters) as the
Langevin equation for the velocity of free Brownian motion (1b), can be regarded as the Langevin equation of a diffusion
process in a harmonic oscillator potential V (x) = µx2/2. The solution of (4) known as the Ornstein–Uhlenbeck position
process is stationary in the large-time limit. This stationary Ornstein–Uhlenbeck process can be associatedwith the quantum
mechanical oscillator. It is mainly for this reason that the stationary Ornstein–Uhlenbeck process is also known as oscillator
process [34–37], especially in the books on path integral formulation of quantum theory [34–36].

The constant coefficient stochastic differential equation (3) for a damped harmonic oscillator driven by white noise can
be generalized to

m(t)
d2x(t)
dt2

+ γ (t)
dx(t)
dt

+ ω2(t)x(t) = η(t), (5)

where m(t), γ (t) and ω(t) can be deterministic or random functions of time. The case m(t), γ (t) and ω(t) are deterministic
functions has been studied by many authors (see for examples [38–41, and references therein]). On the other hand, it is
possible that the mass, damping coefficient and frequency can be fluctuating functions of time. The randomness may come
from the random mass, fractal structure of the medium or random orientation of the Brownian particle, the external effect
due to viscosity. The external randomness may cause by thermodynamic, electromagnetic and mechanical sources. This
exterior fluctuation is crucial for random frequency. Gitterman [7] has provided a comprehensive discussion on oscillator
with randommass, random damping and random frequency.

Harmonic oscillator with random damping and random frequency lately has attracted renewed interest due partly to
its potential application to the modeling of certain nano-devices such as nanomechanical resonators and nanocantilever
[29–33]. The case of harmonic oscillator with random damping [24,42–48] and random frequency [4,49–54] given by white
noise and dichotomous Markov noise (the random telegraph process) is well-studied [4,42–45].

The main aim of this paper is to study Ornstein–Uhlenbeck process with random damping µ(t) based on a generalization
of Eq. (4):

dx(t)
dt

= −µ(t)x + ζ (t), (6)

(6) can be regarded as the overdamped limit of a special case of (5) with m(t) and γ (t) equal to positive constants.
Equivalently, it is the Langevin equation for the position x(t) of the Brownian motion in a harmonic oscillator-like potential
V (x) = µ(t)x2/2. We shall consider Eq. (6) with fluctuating damping due to two kinds of multiplicative noise, namely
the dichotomous noise and fractional Gaussian noise. Note that random damping with fractional Gaussian noise has not
been studied previously, though the case of dichotomous noise has been considered based on Eq. (3) instead of (6). Explicit
solutions of the resulting stochastic processes will be obtained with the full expressions of the mean and covariance of
the associated process calculated to facilitate the study of their asymptotic behavior. We also study the stability of these
solutions.
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2. Ornstein–Uhlenbeck process with multiplicative noise

In this section we consider the Ornstein–Uhlenbeck process obtained as the solution to the following Langevin equation
with random damping or friction:

dx(t)
dt

= −µ(t)x(t) + χ (t), (7)

where µ(t) and χ (t) are random noises yet to be specified. For the ordinary Ornstein–Uhlenbeck process, µ(t) is just a
constant and χ (t) is given by η(t) the usual Gaussian white noise defined by (2). Let

W (t) =

∫ t

0
µ(u)du, (8)

and

W (t|s) = W (t) − W (s) =

∫ t

s
µ(u)du. (9)

The solution of (7) can be written as

x(t) = x◦G(t) +

∫ t

0
G(t|u)χ (u)du, (10)

with

G(t) = G(t|0) = e−W (t), (11)

and

G(t|u) = e−W (t|u). (12)

The mean and covariance of the process are respectively given by

x(t) =
⟨
x(t)

⟩
= x◦

⟨
G(t)

⟩
+

∫ t

0

⟨
G(t|u)

⟩⟨
χ (t)

⟩
, (13)

and

K (t, s) =

⟨[
x(t) − x(t)

][
x(s) − x(s)

]⟩
= x2

◦

[⟨
G(t)G(s) − G(t)G(s)

⟩]
+

∫ min(t,s)

0

⟨
G(t|u)G(s|u)

⟩
du. (14)

For convenience we denote the first and second terms in (14) by K0(t, s) and K1(t, s).
In the subsequent sections we shall study two types of random damping based on the two different multiplicative noise,

namely dichotomous noise and fractional Gaussian noise. The case of oscillator with fluctuating damping term given by
dichotomous noise has been quitewell-studied [25,42–48] (see also references given in [7]). However, most of the studies do
not calculate the covariance of the process (i.e. the solution of (1)), onlymean and variance are calculated using the procedure
of Shapiro–Loginov [55]. In this paper, the covariance of the processwith dichotomous noise as randomdamping is calculated
explicitly. Random damping in the form of fractional Gaussian noise so far has not been considered. Again, the covariance of
the process with fractional Gaussian noise as damping term is computed explicitly. The effect of the multiplicative noise on
stability of the process is considered.

3. Ornstein–Uhlenbeck process with multiplicative dichotomous noise

Denote by ξ (t) the dichotomous (or telegraphic) process [56] which can be defined as

ξ (t) = ϵξ◦(−1)N(t), (15)

where ϵ < 1, is a random variable which takes values ±1, and N(t) is a Poisson process with average rate λ. The mean of the
process is⟨

ξ (t)
⟩
= ϵ

⟨
ξ◦

⟩⟨
(−1)N(t)

⟩
. (16)

For t > s, its covariance is then given by⟨
ξ (t)ξ (s)

⟩
= ϵ2e−2λ(t−s). (17)
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The solution to (7) with dichotomous noise as damping and χ (t) is the Gaussian white noise η(t) is given by (10) with

G(t|s) = e−
∫ t
s ξ (u)du. (18)

One can express G(t) = G(t|0) as a series:

G(t) =

∞∑
n=0

(−ϵ)ngn(t), (19)

with

gn(t) =

∫ t

0
dtn · · ·

∫ t2

0
dt1(−1)

∑n
k=1 N(tk). (20)

The series (19) can be rewritten as the sum of even and odd powers of ϵ:

G(t) =

∞∑
n=0

(−ϵ)2ng2n(t) +

∞∑
n=0

(−ϵ)2n+1g2n+1(t)

= U(t) − V (t), (21)

where

U(t) =

∞∑
n=0

ϵ2ng2n(t) and V (t) =

∞∑
n=0

ϵ2n+1g2n+1(t). (22)

It is straight forward to show that g0(t) = 1, g1(t) =
1−e−2λt

2λ , and for n ≥ 2,

gn(t) =

∫ t

0
f (t − u)gn−2(u)du. (23)

Denote g1(t) by f (t). The mean value of U(t), V (t) and G(t) are then given by

U(t) = 1 + ϵ2
∫ t

0
f (u)U(u)du, (24a)

V (t) = ϵf (t) + ϵ2
∫ t

0
f (u)V (u)du, (24b)

and

G(t) = 1 − ϵf (t) + ϵ2
∫ t

0
f (u)G(u)du. (24c)

We remark that the above average values are conditional averages with initial random variable ξ◦ = 1. By averaging over
ξ◦ = ±1 with equal probability, all odd terms with respect to ϵ vanish, one gets G = U .

(24) can be evaluated with the help of Laplace transform to give

U(t) =
1
2Λ

[
−βeαt

+ αeβt
]
, (25a)

V (t) =
ϵ

2Λ

[
eαt

− eβt
]
, (25b)

G(t) =
1
2Λ

[
−(β + ϵ)eαt

+ (α + ϵ)eβt
]
, (25c)

where

Λ =

√
λ2 + ϵ2, α = −λ + Λ, β = −λ − Λ. (26)

The mean of the process is then given by

x(t) = U(t)x◦. (27)

In order to determine the covariance (14) of the process, it is necessary first to calculate
⟨
G(t|u)G(s|u)

⟩
, which can be

rewritten as⟨
G(t|u)G(s|u)

⟩
=

⟨
G(t|s)G2(s|u)

⟩
=

⟨
U(t − s)

⟩⟨
G2(s|u)

⟩
−

⟨
V (t − s)

⟩ 1
(−2ϵ)

d
ds

⟨
G2(s|u)

⟩
. (28)
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(See the appendix for more details.) By noting that G2(·) has the same expression as G(·) with ϵ replaced by 2ϵ, and using a
similar argument as given in Appendix, one can obtain

G2(s|u) = U2(s − u) − V 2(s − u)e−2λu, (29)

and
d
ds

U2(s − u) = 2ϵV 2(s − u). (30)

Now taking the average over initial random variable ξ◦ = ±1, noting that only even terms in ϵ remain, one thus gets⟨
G(t|u)G(s|u)

⟩
= U(t − s)U2(s − u) + V (t − s)V 2(s − u). (31)

Using the above results, one finally obtains K (t, s) = K◦(t, s) + K1(t, s) with

K◦(t, s) = x2
◦

[
U(t − s)U2(s) + V (t − s)V 2(s) − U(t)U(s)

]
, (32a)

K1(t, s) = U(t − s)
∫ s

0
U2(s − u)du + V (t − s)

∫ s

0
V 2(s − u)du. (32b)

Let ∆ = t − s in (32). By carrying out the integrations in (32b), and expanding the sum of its argument U(t) = U(∆)U(s) +

V (∆)V (s) in (32a), and rearranging the terms gives

K◦(s + ∆, s) = x2
◦

[
U(∆)U2(s) + V (∆)V 2(s) −

(
U(∆)U(s) + V (∆)V (s)

)
U(s)

]
, (33a)

K1(s + ∆, s) = U(∆)
[

λ

2ϵ2

(
U2(s) − U2(0)

)
+

1
2ϵ

V 2(s)
]

+
1
2ϵ

V (∆)
(
U2(s) − U2(0)

)
. (33b)

Now we want to consider the properties of the mean and covariance, in particular their asymptotic behavior. For ϵ = 0,
one get Λ = λ, α = 0, and β = −2λ, which immediately imply U(t) = 1 and V (t) = 0. Hence one gets the mean x(t) = x◦.
By taking the ϵ → 0 limit in (33) results in K (t, s) = s, a result consistent with the covariance of Brownian motion.

Next, we consider the small-time and long-time asymptotic properties of the covariance. In the t → 0 limit, up to first
order of t , one has U(t) = 1 and V (t) = ϵt . Thus, for small s and finite ∆ = t − s,

K (s + ∆, s) =

[
U(∆) + ϵx2

◦
V (∆)

]
s. (34)

For t → ∞, one can neglect eβt and just keep eαt since α > β . This gives

U(t) =
−β

2Λ
eαt and V (t) =

ϵ

2Λ
eαt . (35)

The mean is then given by an exponential increasing function:

x(t) = x◦

−β

2Λ
eαt . (36)

The long-time limit of the covariance is more delicate. We have the following asymptotic expressions:

K◦(s + ∆, s) ∼ x2
◦

[(
U(∆) +

2ϵ
−β2

V (∆)
)(

−β2

2Λ2

)
eα2s −

(
U(∆) +

ϵ

−β
V (∆)

)(
β2

4Λ

)
e2αs

]
, (37a)

K1(s + ∆, s) ∼

[
U(∆)

(
λ +

2ϵ2

−β2

)
+ ϵV (∆)

](
−β2

4ϵ2Λ2

)(
eα2s − 1

)
. (37b)

For the reason that α2 > 2α, but very small (for any fixed t), the two exponential terms in (37a) cannot be ignored. However,
for very large swe could said that it behaves asymptotically as eα2s, that is it depends on only the first term. For (37b) it varies
asymptotically as eα2s − 1, and it is obvious in the asymptotic sense it behaves like eα2s. However, the expression not only
has this asymptotic behavior, so is its tangent at infinity. Moreover, it takes care of the term 1/ϵ2, that is it cancels this
divergence. Thus for fixed ϵ > 0, one can say that the covariance increases asymptotically as eα2s.

Next, we want to consider a more conventional way of introducing the random damping term. If instead of the
dichotomous random damping µ(t), one modifies it as the sum µ(t) = µ◦ + ϵξ (t), where ξ (t) is the dichotomous noise
as defined earlier. In other words, the dichotomous noise is now introduced as a perturbation term to the original constant
damping µ◦. Let the resulting process be denoted by x+(t). In this case it is straight forward to obtain the G+ corresponding
to x+(t):

G+(t|s) = e−µ◦(t−s)G(t|s), (38)
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Fig. 1. The process is mean-stable in the shaded region.

Fig. 2. Mean of the process x+(t) with different values of µ◦ and ϵ.

where G(t|s) is the same as given before by (12). Similarly, the associated mean is given by

x+(t) = x◦U+(t) = x◦e−µ◦tU(t) = x◦e−µ◦t
[
−βeαt

+ αeβt
]
. (39)

Clearly, as t → ∞ the mean x+(t) converges to zero.
Note that the case µ◦ = α is the critical value as µ◦ < α the mean is not stable, and µ◦ ≥ α it is stable. By using (26) the

critical point can be expressed explicitly as

µ◦ = −λ +

√
λ2 + ϵ2 (40)

Dividing (40) by λ, and rearranging and then taking square of the resulting expression gives(
µ◦

λ
+ 1

)2

−

(
ϵ

λ

)2

= 1, (41)

which is the equation of a hyperbola. The stability condition becomes
(

µ◦

λ
+ 1

)2
−

(
ϵ
λ

)2
≥ 1. Fig. 1 shows only the right

part of the hyperbola (41). The values inside the shaded area give stable mean.
Note that at the critical value, we have

x+(t) = x◦

1
2Λ

[
−β + αe−2Λt

]
. (42)
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Fig. 3. Covariance of the process x+(t) with different values of µ◦ and ϵ for fixed ∆ = 1.

Here we remark that the process is stable in the mean at the critical point even though the value x+(t) approaches
asymptotically to a constant x+(t) − x◦

λ+Λ
2Λ which is a slightly lower than x◦. However, if we use the Lyapunov stability

condition (to be discussed in Section 5), then it is not stable at the critical point. Fig. 2 depicts how themean x+ changes with
time for different values of µ◦ and ϵ.

As for the covariance, one has

K◦+(t, s) = x2
◦

[
U+(t − s)U2

+(s) + V+(t − s)V 2
+(s) − U+(t)U+(s)

]
. (43)

The second component of the covariance function is slightly more involved. Consider the expression analogous to (32b), and
after integration one gets

K1+(t, s) =
U+(∆)
2Λ2

[
−β2

2µ◦ − α2

(
1 − e−(2µ◦−α2)s

)
+

α2

2µ◦ − β2

(
1 − e−(2µ◦−β2)s

)]
+

2ϵV+(∆)
2Λ2

[
1

2µ◦ − α2

(
1 − e−(2µ◦−α2)s

)
−

1
2µ◦ − β2

(
1 − e−(2µ◦−β2)s

)]
. (44)

Here,

Λ2 =

√
λ2 + 4ϵ2, α2 = −λ + Λ2, β2 = −λ − Λ2. (45)

In the case of covariance, the critical value for it to be bounded isµ◦ = α2/2. One can obtain a hyperbola equation similar
to that of (41):(

2µ◦

λ
+ 1

)2

−

(
2ϵ
λ

)2

= 1 (46)

For µ◦ > α2/2 and finite δ = t − s, s → ∞, one obtains

K1+(s + ∆, s) =
U+(∆)
2Λ2

[
−β2

2µ◦ − α2
+

α2

2µ◦ − β2

]
+

2ϵV+(∆)
2Λ2

[
1

2µ◦ − α2
−

1
2µ◦ − β2

]
. (47)

So the process is stationary in the large-t limit. It converges to a bounded value independent of the initial point. Fig. 3 shows
the covariance corresponds to various values of µ◦ and ϵ = 1 for fixed ∆ = 1. For µ◦ ≤ α2/2 the covariance is Finally we
note that for both above cases it is clear that ϵ

µ
< 1, which justifies the use of the term perturbative.

4. Ornstein–Uhlenbeck process with multiplicative fractional Gaussian noise

In this section we want to consider the random damping µ(t) given by fractional Gaussian noise V (t), that is the noise
obtained from the generalized derivative (in the sense of generalized function) of the fractional Brownian motion, just like
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white noise is the generalized derivative of Brownian motion [57]. The fractional Brownian motion W (t) is defined as a
Gaussian process with mean zero and the following covariance [57,58]:

C(t, s) =
⟨
W (t)W (s)

⟩
−

⟨
W (t)

⟩⟨
W (s)

⟩
=

σ 2
H

2

[
|t|2H + |s|2H − |t − s|2H

]
, (48)

where 0 < H < 1 is the Hurst index. Note that the form of the coefficient σ 2
H depends on the constant coefficient in the

definition ofW (t). For examples, it can be normalized to be unity, or it can also be given explicitly as

σ 2
H =

Γ (2 − 2H) cos(πH)
πH(1 − 2H)

. (49)

For simplicity we assume σ 2
H to be unity. Fractional Gaussian noise V (t) can considered as the generalized derivative ofW (t),

is defined as a Gaussian process with zero mean and covariance given by⟨
V (t)V (t + τ )

⟩
= H(2H − 1)|τ |

2H−2|. (50)

Now by using the same notation G(·, ·) as for the previous sections, one gets⟨
G(t|s)

⟩
= e

1
2 |t−s|2H . (51)⟨

G(t|u)G(s|v)
⟩
= exp

{
1
2

⟨[
W (t) − W (u) + W (s) − W (v)

]2⟩}
= exp

{
1
2

[
|t − u|2H − |t − s|2H + |t − v|

2H
+ |s − u|2H + |s − v|

2H
− |u − v|

2H
]}

. (52)

The Ornstein–Uhlenbeck process with fractional Gaussian noise as the damping term, denoted by xg , has the mean given by

xg (t) = x◦G(t) = x◦e
1
2 |t|2H . (53)

The covariance can be split into two parts as it has been done previously:

Kg◦(t, s) = x2
◦

[
e

1
2

[
2|t|2H+2|s|2H−|t−s|2H

]
− e

1
2

[
|t|2H+|s|2H

]]
, (54a)

Kg1(t, s) =

∫ s

0
e

1
2

[
2|t−u|2H+2|s−u|2H−|t−s|2H

]
du. (54b)

The integration in (54b) can be evaluated by substitution u′
= s − u, which gives

Kg1(t, s) = e−
1
2 |t−s|2H

∫ s

0
e

1
2

[
2|t−s+u|2H+2|u|2H

]
du (55a)

= e−
1
2 |t−s|2H

∞∑
m=0

∞∑
n=0

1
m!n!

∫ s

0
|t − s + u|2mH

|u|2nHdu. (55b)

(54b) can also be written in the following form:

Kg1(t, s) = se−
1
2 |t−s|2H

∫ 1

0
e

1
2

[
2t2H |1−(s/t)u|2H+2s2H |1−u|2H

]
du (56a)

= e−
1
2 |t−s|2H

∞∑
m,n=0

t2mHs2nH+1

m!n!

∫ 1

0

⏐⏐1 − (s/t)u
⏐⏐2mH ⏐⏐1 − u

⏐⏐2nHdu. (56b)

From the integral table [59, p. 317,#3.197.3]∫ 1

9
xλ−1(1 − x)µ−1(1 − βx)−νdx = B(λ, µ)2F1(ν, λ, λ + µ; β) (57)

[Reλ > 0, Reµ > 0, |β| < 1],

and by letting

λ = 1, µ = 2nH + 1, β = s/t, (58)

one gets

Kg1(t, s) = e−
1
2 |t−s|2H

∞∑
m,n=0

t2mHs2nH+1

m!n!
B(1, 2nH + 1)2F1(−2mH, 1, 2nH + 2; s/t). (59)
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Let the variance be denoted by

Sg (t) = Kg (t, t) = Kg◦(t, t) + Kg1(t, t) = Sg◦(t) + Sg1(t).

From (54a), we have

Sg◦(t) = x2
◦
e|t|2H

[
e|t|2H

− 1
]
. (60)

One can get Sg1(t) from (59) by letting s/t = 1. A more transparent expression is obtained by using (54b) with s = t:

Sg1(t) =

∫ t

0
e2|t−u|2H du =

∫ t

0
e2|u|

2H
du, (61)

which can be evaluated by direct expansion:

Sg1(t) =

∞∑
n=1

(2)n
t2nH+1

n!(2nH + 1)
. (62)

For special case 2H = 1/q for q = 1, 2, . . . , it has a closed expression

Sg1(t) = q
(
1
2

)q ∫ 2t1/q

0
uq−1eudu

= q
(
1
2

)q[
(−1)q(q − 1)! − e2t

1/q
q−1∑
k=0

(q − 1)!
k!

(−1)q−k2ktk/q
]
. (63)

When q = 2 (or H = 1/4) one gets

Sg1(t) =
1
2

[
1 − e2

√
t
+ 2

√
te2

√
t
]
. (64)

The short and long time behaviors of (64) are given by Sg1(t) ∼ t and Sg1(t) ∼
√
te2

√
t . However, the behaviors for Sg◦(t)

is ∼x2
◦

√
t and ∼x◦e2

√
t , correspondingly. Therefore the short and long time total variance varies as Sg (t) is ∼ x2

◦

√
t and

∼
√
te2

√
t .

Again, just like in the case of dichotomous noise, we can introduce the fractional Gaussian noise as a perturbation to the
original damping so that the modified damping term becomes µ(t) = µ◦ + ϵξ (t). The resulting process has the following
mean and covariance:

xg+(t) = x◦G+(t) = x◦e−µ◦t+ ϵ2
2 |t|2H . (65)

and

Kg◦(t, s) = x2
◦
e−µ◦(t+s)

[
e

ϵ2
2

[
2|t|2H+2|s|2H−|t−s|2H

]
− e

ϵ2
2

[
|t|2H+|s|2H

]]
, (66a)

Kg1(t, s) =

∫ s

0
e−µ◦(t+s−2u)+ ϵ2

2

[
2|t−u|2H+2|s−u|2H−|t−s|2H

]
du

= e−µ◦(t−s)+ ϵ2
2 |t−s|2H

∫ s

0
e−µ◦(2u)+ ϵ2

2

[
2|t−s+u|2H+2|u|2H

]
du

= |t − s|e−µ◦(t−s)− ϵ2
2 |t−s|2H

∫ s/|t−s|

0
e−2µ◦|t−s|u+ϵ2|t−s|2H

[
|1+u|2H+|u|2H

]
du. (66b)

and again we define Kg+(t, s) = Kg0+(t, s) + Kg1+(t, s). Figs. 4 and 5 respectively depict the variation of mean in time for
various values of µ◦ and H for ϵ = 1, and the changes of covariance with different values of µ0 and H for ϵ = 1 and ∆ = 1.

The condition for xg+(t) to be stable in the mean and covariance is independent of ϵ as far as both ϵ > 0 and µ◦ > 0; it
depends only on the Hurst index. This can be easily seen by considering the expressions given by (65) and (66). The dominant
term for 2H < 1 is the exponential e−µ◦t as all powers of t2H approach infinity. This case give stable mean and asymptotic
stationary covariance. However, in the case 2H = 1 and exponential terms are linear in time. Thus the stability is determined
by µ◦ > ϵ2/2.

From (66b), it can be immediately notice that after limit s → ∞, it becomes a Laplace transform.Moreover, it is a function
of the difference t − s, thus Kg1 is stationary. The s → ∞ limit (66a) vanishes. Thus, it is a stationary as well.

5. Stability

In this section we want to discuss one important property of the Ornstein–Uhlenbeck process with random damping,
namely its stability. Stability of a solution of differential equation has been well studied (see for example [60, and reference
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Fig. 4. Time variation of mean xg+(t) for different values of µ◦ and H with ϵ = 1.

Fig. 5. Covariance of xg+(t) for different values of µ◦ and H with ϵ = 1 and ∆ = 1.

therein]). There exist many variants on the notions on stability such as uniform stability, exponential stability etc. The most
widely discussed topic on this subject is the Lyapunov stability which we shall consider later on. For the general non-linear
equation

dx
dt

= f (t, x), x(0) = x◦, (67)

the point xe such that f (t, xe) = 0 is the stationary point of the system described by (67). More generally, it is an
stationary trajectory as x(t) = xe. A system is said to be globally asymptotically stable if x(t) → xe as t → ∞ for every
trajectory x(t). On the other hand, a system is locally asymptotically stable near or at xe, if there is an L > 0 such that⏐⏐x(0) − xe

⏐⏐ ≤ L H⇒ x(t) → xe as t → ∞.
Note that in the stability analysis, the linear part of the equation plays an essential role, and therefore main investigation

is focused on A(t) =
∂ f (x,t)

∂x

⏐⏐⏐
x=xe

. For the time invariant case the condition ReA < 0 implies the system is asymptotically stable
at xe.

In the case of stochastic differential equations, one has to consider stochastic stability. Again, there are various versions of
stochastic stability, which include stable in probability, in p-moment, etc. [61]. Our main interest is the p-moment stability
of the Langevin equation with random damping as given by (7). In the deterministic case, it is clear that for µ(t) > 0 the
system is asymptotically stable at xe(t) = η(t)/µ(t) by Lyapunov condition. For the stochastic process given by (7), both η
and µ are random variables and the problem becomes more complex.

Since the stationary trajectory by itself fluctuates around the mean xe(t) = 0, in general, it is thus not expected to have
p-moment [x(t) − xe(t)]p to approach zero as t → ∞. In fact, since the covariance of the random variable η is given by a
generalized function (delta function), which makes the problem even more complicated.
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Recall that the random variable η is physically linked to thermal fluctuation, and it is temperature dependent. In fact
the covariance of η have linear term in temperature kBT as coefficient, which has not been included explicitly in our earlier
discussion. Therefore at zero temperature, the random variable η vanishes on the right hand side of the Eq. (7). In this case,
we have zero temperature time independent stationary point as xe = 0. However, in case µ(t) = 0, one gets the constant
solution xe = x◦, which is not of interest to us.

Next, wewant to discuss the effect of multiplicative noise on the stability of the Ornstein–Uhlenbeck process. A process is
said to be stable in the mean and variance if its mean and variance are respectively converge to zero as time goes to infinity.
From the results in Section 3 we conclude that the Ornstein–Uhlenbeck process with damping term given by multiplicative
dichotomous noise is not stable since the mean and variance of the resulting process diverge in the long-time limit. We
remark that instability in the mean and variance also implies energetic instability or instability in the mean energy [48].

However, if the dichotomous damping noise is introduced as a perturbed term,wehave shown that both themean and the
variance are bounded for very large time in Section 3. Thus the process is stable in themean and variance, hence energetically
stable when the random damping is expressed in terms of original unperturbed constant damping plus the dichotomous
noise as the perturbation.

Similarly, it is quite clear from the results in Section 4 that Ornstein–Uhlenbeck process with fractional Gaussian noise
as damping is unstable both in mean and covariance. Again, it can be stabilized by similar procedure as in the case of
dichotomous noise, that is by introducing fractional Gaussian noise as a perturbation to the original constant damping.
We have shown in the last section that both the mean and variance both decay at large time for all 0 < H < 1/2, so the
associated process is stable in mean and bounded in variance. On the other hand, for 1/2 < H < 1, both the mean and
variance diverge exponentially as roughly as e−µ◦t+ϵ2|t|2H

∼ eϵ2|t|2H . At the critical value H = 1/2 is they may diverge or
converge depending on µ◦ and ϵ2.

We shall next proceed to calculate explicitly the Lyapunov exponent which is given by

θp = lim
t→∞

1
t
log

⟨
x(t)p

⟩
. (68)

First we note that the solution of (7) or the Ornstein–Uhlenbeck process with multiplicative noise as damping, can be
decomposed into two part as follows:

x(t) = x• + x1(t). (69)

Here, the x•(t) = x◦G(t) is non-thermal, i.e. independent of thermal noise η, and instead it depends only on themultiplicative
noise µ(t). On the other hand, x1(t) =

∫ t
0 G(t|u)η(u)du is the thermal part, it depends on both noises. Denote the p-moment

by

Mp = M•

p + M thermal
p , (70)

where M•
p is the p-moment of x•(t), or the zero temperature p-moment, and M thermal

p is the contribution from x1(t), or the
non-zero temperature contribution of p-moment. The thermal part M thermal

p involves some power of x• and x1, in the form⟨[
x•(t)

]p•
[
x1(t)

]p1 ⟩ where p1 ≥ 1 and p• + p1 = p.
We would like to consider first with the zero temperature p-moment, which is simply of the form

M•

p = xp
◦

⟨
Gp(t)

⟩
. (71)

Based on the results obtained in previous section, we know that all cases under consideration have asymptotic exponential
form, either positive or negative.

Here we consider only the processes where the multiplicative noise is introduced as the perturbative term. For the
dichotomous case it is quite obvious that its first moment is stable. Unfortunately, the higher moments need more
elaboration to ensure their stability. However, this is not the case for the fractional Gaussian noise as it takes values from
negative infinity to positive infinity. We find that it is also asymptotically stable. For dichotomous noise, it is immediately
clear that the p-moment is given by

M•

p+ = xp
◦
e−pµ◦tUp(t), (72)

where Up is similar to U , except replace ϵ by pϵ. Thus we have for pµ◦ > αp, that the Lyapunov exponent is

θp = −(pµ◦ − αp). (73)

It is not obvious that θp is negative for all p = 1, 2, . . .. For p > 0 and µ2
◦
− ϵ2 > 0, we know that

(pµ◦ + λ)2 − (λ2
+ p2ϵ2) = p2(µ2

◦
− ϵ2) + 2pλµ > 0. (74)

Thus, we obtain

pµ◦ − αp = pµ◦ + λ −

√
λ2 + p2ϵ2 > 0. (75)
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It is thus verified that p-moment is stable with the corresponding Lyapunov exponent given by (73).
For the fractional Gaussian noise, the p-moment is given by

M•

pg+
= xp

◦
e−pµ◦+p2ϵ2|t|2H . (76)

Thus it is stable for all ϵ provided H < 1/2, and its Lyapunov exponent is given by

θp = −pµ◦. (77)

For H = 1/2, ξ is just the simple Brownian motion, and

θp = −(pµ◦ − p2ϵ2). (78)

This indicates that it is stable only for low value of p, for example, p = 1.
The thermal part of the p-moment involves only even power of x1(t). Let us consider the 2-moment.

M2 = M•

2 + M1
2 (79)

It is clear that the thermal part is only pure, i.e. involves only x1: Aswehave discussed above the zero-temperature p-moment
M•

p −−−→
t→∞

0 for the correspondence conditions. From the estimates in previous sections, for either dichotomous and fractional
Gaussian noise, we have provided the calculation and graph for K1+(t, s), which converges to a constant as t → ∞. It is clear
that the corresponding thermal 2-momentM thermal

2 (t) = S1+(t) converges to a constant. Since

θp = lim
t→∞

1
t
log

[
M•

p (t) + M thermal
p (t)

]
= lim

t→∞

1
t
log

[
M thermal

p (t)
]
, (80)

which gives

θ2 = θ thermal
2 = 0. (81)

By definition, this implies the process is not Lyapunov asymptotically stable in 2-moment. It is obvious that the process is
not Lyapunov asymptotically for stable all higher p-moments as well.

For non-zero positive temperature, there exists thermal fluctuation. However, the processes are still stable in the mean.
The fluctuation around themean is the usual one. Thus in this case only the 1-moment are consider. The Lyapunov exponent
of dichotomic noise and fractional Gaussian noise are given by the same exponent as above for the zero temperature case
1-moment.

6. Conclusion

We are able to obtain the explicit solutions of the Langevin equation with random damping given by dichotomous and
fractional Gaussian noise. Themean and covariance of the resulting processes are calculated explicitly. Asymptotic properties
of the mean and covariance are studied. The resulting Ornstein–Uhlenbeck process is unstable in the mean, variance as well
as energetic stable if the damping term is given purely by the dichotomous noise. However, if the dichotomous noise appears
as a perturbation term to the original constant damping, the process becomes stable in the mean, variance and is energetic
stable. In the case of damping given by fractional Gaussian noise, a similar situation exists. Direct use of fractional Gaussian
noise as the random damping term leads to a Gaussian process which is unstable in mean and variance, hence energetically
unstable. Again, if the fractional Gaussian noise enters as a perturbative term to the original constant damping, the resulting
process is stable inmean, variance and energy. On the other hand, the Ornstein–Uhlenbeck processes with random damping
considered in this paper are Lyapunov asymptotically unstable in 2- and higher moment. We remark that our results on the
fractional Gaussian damping have the potential for modeling physical systems experiencing random damping since it has
the advantage that the Hurst index associated with the fractional Gaussian noise can serve as an adjustable parameter for
the model.

One possible extension of our study is to allow the mass to fluctuate in addition to the random damping. The stochastic
equation describing such a system involves two multiplicative noise terms, which will be difficult to solve and one
expects analytic solution does not exist. Burov and Gitterman [62] have recently considered such a system with both the
multiplicative noises of dichotomous type. They used the Shapiro–Loginov formula to obtain the mean and variance and
study the stability of the system in the mean and variance.

Another generalization is to consider the fractional version of Langevin equationwith randomdamping term. For constant
damping, fractional Langevin equation with single and two indices [63,64], with distributed order [65], and generalized
fractional Langevin equation [66,67] have been previously considered. One would expect the solutions for these fractional
generalizations to be even more complex since the simpler cases discussed in this paper show the solutions are rather
involved. Numerical and approximation methods have to be employed to study such systems.

Finally, one may wish to consider more realistic models by taking into consideration both the fluctuating medium or
environment and the effects of time delays [68], which are of particular interest in population and biomedical dynamics,
economics and finance, chemical and biochemical processes, etc. On the other hand, inmodelingmany complex systems the
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effect of aging becomes significant (see for example, [69]). The aging effect, a characteristic of non-stationary process, is the
dependence of statistical properties of the process on the time lag between the initiation of the system and the start time of
the observation of the process. A recent study [70] has considered the aging and delay time analysis of financial time series.
It would be interesting to carry out a similar study for our system.

Appendix. Calculation of
⟨
G(t|u)G(s|u)

⟩
In this appendix, we give some details on the derivation of (28).
Note that

gn(t|s) =

∫ t

s
dtn · · ·

∫ t2

s
d1(−1)

∑n
k=1 N(tk)

=

∫ t

s
dtn · · ·

∫ t2

s
d1(−1)

∑n
k=1[N(tk)−N(s)]+nN(s)

=

∫ t

s
dtn · · ·

∫ t2

s
d1(−1)

∑n
k=1 N(tk−s)+nN(s). (A.1)

By changing variable t ′k = tk − s for k = 1, 2, . . . , n, (A.1) can be rewritten as

gn(t|s) =

∫ t−s

0
dtn · · ·

∫ t2−s

0
d1(−1)

∑n
k=1 N(tk)+nN(s)

= gn(t − s)(−1)nN(s). (A.2)

Therefore,

G(t|s) = U(t − s) − V (t − s)(−1)nN(s). (A.3)

Now, (28) can be expressed as⟨
G(t|s)G2(s|u)

⟩
=

⟨
U(t − s)

⟩⟨
G2(s|u)

⟩
−

⟨
V (t − s)

⟩⟨
(−1)N(s)G2(s|u)

⟩
. (A.4)

Furthermore, one notes that

(−1)N(t)gn(t|s) =
d
dt

gn+1(t|s), (A.5)

which can be easily verify by expressing the integral explicitly, then differentiate with respect to the upper limit t . From
expression (19) and (A.5), one can write

(−1)N(s)G2(s|u) =
1

(−2ϵ)
d
dt

G2(s|u). (A.6)

Note that g◦(s|u) = 1. Inserting (A.6) in (A.4) we obtain (28).
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