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Abstract: Accuracy is an important measure of system performance and remains a challenge
in 3D range gated reconstruction despite the advancement in laser and sensor technology.
The weighted average model that is commonly used for range estimation is heavily influenced
by the intensity variation due to various factors. Accuracy improvement in term of range estimation
is therefore important to fully optimise the system performance. In this paper, a 3D range gated
reconstruction model is derived based on the operating principles of range gated imaging and
time slicing reconstruction, fundamental of radiant energy, Laser Detection And Ranging (LADAR),
and Bidirectional Reflection Distribution Function (BRDF). Accordingly, a new range estimation
model is proposed to alleviate the effects induced by distance, target reflection, and range distortion.
From the experimental results, the proposed model outperforms the conventional weighted average
model to improve the range estimation for better 3D reconstruction. The outcome demonstrated is of
interest to various laser ranging applications and can be a reference for future works.

Keywords: TOF range imaging; range gated imaging; 3D reconstruction

1. Introduction

Because of the non-contact and non-destructive nature, laser has been a favoured solution
especially in remote sensing and machine vision [1]. While a variety of techniques are suited
for different applications, the range gated technique provides efficient laser ranging based on the
Time-of-Flight (TOF) principle where the distance is determined from the travel time measured between
the emitted and reflected laser pulse [2]. In recent years, this technique has become even more cost
effective with the continuous development of equipment and the processing method. Due to good
application prospects, the range gated technique has been widely applied for target detection and
recovery [3], night vision [4], underwater [5], and 3D imaging [6].

In spite of the advancement in equipment, i.e., laser and sensor technology, the accuracy
of 3D range gated reconstruction remains a challenge due to various factors in the system.
Therefore, range estimation improvement is crucial to accomplish accurate reconstruction. A laser
signal reflected from the target surface can be exploited using different range estimation algorithms
such as peak estimator/discriminator, leading edge detection, and average (centre of mass/gravity
determination) [7]. In some applications, the use of matched filter (cross-correlation) and maximum
likelihood estimator are possible to provide better range estimation based on a reference signal or
model [8,9]. Peak detection determines the range by the maximum of the returned signal where the
highest power theoretically coincide with the reflected target. Leading edge detection works based
on a predefined threshold where the range is determined by the threshold crossing in the returned
signal [10]. Matched filter compares the received signal to a reference using a cross-correlation
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technique. Maximum likelihood estimator performs similarly to a matched filter with respect to the
mean squared error (MSE) but has a bias in range estimation when a signal deviates from the model
assumed [9].

The range gated technique utilises the reflected time slices that consist of the reflectivity and
range information simultaneously for 3D reconstruction. There are some practical complications
to be considered. Although the reflected laser pulse is a Gaussian function in general, the actual
signal returned is not precisely known since the target scene or object of interest is unknown. In this
context, peak estimator and leading edge detection are clearly not suitable due to the noisy nature
of the reflected laser signal recorded in the image pixels [11]. As for matched filter and maximum
likelihood method, a reference signal or model needs to be assumed that is not feasible in some cases.
Moreover, inaccurate reference directly affects the range accuracy. Because of the aforementioned
considerations and limitations, weighted average method is commonly applied for range estimation in
3D range gated reconstruction [12,13]. However, the range accuracy of this model is influenced by the
intensity variation [14].

Essentially, the received intensity is affected by a few main components: laser source, sensor,
target, and atmospheric effect [15,16]. In addition, the intensity data is also influenced by other
factors such as the near-distance effect [17], multiple returns [18], system settings [19], and automatic
gain control [20]. Various parameters and processing techniques were reviewed in literatures [14].
A laser based solution is complicated and requires considerable post-processing efforts because of the
characteristics of laser and its changes along the transmission. The laser beam propagation towards the
target and return back to the receiver can be described by the spatial-temporal distribution. Since the
signal to noise ratio (SNR) is proportional to the laser intensity in general, the ranging performance
exhibits a correlated variation to the laser optical power distribution, which is non-uniform profile in
practice [21]. System performance is often limited by the reduced SNR due to the decreasing reflected
intensity over distance, which restricts the operating range of many applications [22]. Target reflection
affects the detection and ranging behaviours that are crucial especially to applications such as target
recognition and object modelling [23,24]. These characteristics of target reflection can be significant
important to analyse and solve the complex ranging problem [25]. Laser illumination and optical
components introduce additional effects which could affect the image formation [26]. As the accuracy
of depth and 3D reconstruction strongly relies on the range information, it is necessary to understand
the range distortion due to the inhomogeneity of illumination and propose an appropriate correction.
Recovery of the actual target echo pulse is a well known problem in range gated systems. The influence
of the laser profile [27], distance interference [28], sensor [29,30], and scattering effects [31] has been
discussed in various literatures.

This paper provides an in-depth analysis of the 3D range gated reconstruction and proposes a
new range estimation model to alleviate the effects induced by the influence factors. In Section 2,
system set-up, operating principle, and technique used in 3D range gated reconstruction are described.
In Section 3, we discuss the range accuracy in a range gated system with time slicing reconstruction
and the associated influence factors. In order to improve the range accuracy, we derive and propose
a new range estimation model in Section 4 by considering multiple influence factors in the system.
In Section 5, the proposed range estimation model is validated and discussed. Lastly, conclusion is
given in Section 6.

2. 3D Range Gated Reconstruction

Figure 1 shows the schematic diagram of a range gated imaging system for 3D reconstruction.
The system set-up includes a pulsed laser module, Intensified Charged Coupled Device (ICCD) gated
camera and its control unit, delay generator for system triggering and synchronisation, lens assemblies,
and power supplies. Additionally, interfaces such as a frame grabber or digital video converter
and measurement devices such as a photodetector and oscilloscope are used. The laser and camera
are controlled simultaneously by the delay generator during the acquisition of range gated images.
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A Q-switched Nd:YAG pulsed laser with wavelength 532 nm provides illumination to the target and
an ICCD camera is configured to capture the reflected intensity images that are the input for range and
3D reconstruction.

Figure 1. Schematic diagram of range gated imaging system setup.

Delay generator is configured to trigger the camera gate to open for a very short duration normally
in nanoseconds or picoseconds at the designated delayed time to capture the reflected laser pulse in
the form of a two-dimensional (2D) intensity image. Synchronisation between the laser and the gated
camera is particularly important during the image acquisition. The camera gate remains closed when
the laser pulse is emitted towards the target. The camera gate is configured to open at the designated
delayed time to capture the visible time slice reflected in the form of an intensity image. This operating
principle of the image acquisition is illustrated in Figure 2.

Figure 2. Synchronisation of the laser and camera during range gated image acquisition.

Based on the time slicing technique, a sequence of 2D images i = 1, 2, ..., n is acquired by sliding
the camera gate tgate at delay time ti with a time step tstep to sample range slices from the target
scene as illustrated in Figure 3. These images acquired consist of reflectivity and range information
simultaneously, which are important for 3D reconstruction.
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Figure 3. Time slicing technique captures a sequence of intensity images for 3D reconstruction.

For each image pixel (x, y), the corresponding range < r > (x, y) can be obtained from the
average TOF or two-way travel time < t > (x, y) to construct a 3D depth map for the entire image
field-of-view (FOV).

< r > (x, y) =
c < t > (x, y)

2
. (1)

The average TOF < t > (x, y) can be determined from the pixel intensity Ii(x, y) captured over
the image sequence acquired using the weighted average method.

< t > (x, y) =

n
∑

i=1
Ii(x, y)ti

n
∑

i=1
Ii(x, y)

. (2)

Eventually, the calculated 3D depth map and 2D image textures are used for 3D reconstruction of
the target scene.

3. Accuracy Analysis

3.1. Range Accuracy

In a range gated system with time slicing reconstruction, SNR is expressed in terms of the reflected
laser intensity Ii and associated noises δIi from a sequence of image slices Ii(x, y).

SNR =
∑i Ii√

∑i(δIi)2
. (3)

By considering random noise, where (δIi)
2 ≈ Ii, SNR can be simplified as:

SNR ≈ ∑i Ii√
∑i Ii

=
√

∑
i

Ii. (4)

Theoretically, SNR can be estimated from the system parameters as follows:

SNR ≈
√

∑
i

Ii =

√
σ

tstep
max(Ii), (5)

where the total intensity in an image pixel I = ∑i Ii is contributed by number of time slices, which is
given by the σ/tstep factor. Variance of the measured travel time σ2 depends on the laser pulse width
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and camera gate time, while tstep is the delay time step used for images acquisition. Accordingly, range
accuracy is estimated as [12]:

δr ≈ 1
2

cσ

SNR
. (6)

As can be seen, range accuracy is governed by two parameters: σ and SNR. In general, σ is
affected by the system specification, i.e., laser and camera, where the range accuracy can be improved
by the hardware advancement. On the other hand, SNR is proportional to the reflected laser intensity,
which can be influenced by other conditions such as distance and target reflection.

3.2. Influence Factors Affecting Range Accuracy

The reflected laser intensity captured in an image pixel Ii is the incident energy of the laser pulse
Pr integrated when the camera gate G(t) opens, which is expressed as:

Ii =
∫

Pr(t−
2r
c
)G(t− ti)dt. (7)

The reflected laser Pr(t) is delayed by the round trip travel time 2r
c and the camera gate G(t) is

delayed by time ti. The reflected laser energy and its dependencies on multiple influence factors can
be defined by the Laser Detection And Ranging (LADAR) equation [32]:

Pr =
ηsysηatmD2ρAPt

r2θR(θtr)2 , (8)

where Pt represent the transmitted laser energy across range r. ηsys and ηatm are the system efficiency
and atmospheric transmission loss factor, respectively. D is the receiver aperture’s diameter and ρ is
the target surface reflectivity. θt represents the laser transmitter beam diameter and angular divergence.
θR is the solid angle over which radiation is dispersed upon reflection.

To simplify the LADAR equation, we assume a well-resolved target where the target area A
equals the projected area of the laser beam. This can be written as:

A =
πθ2

t r2

4
. (9)

Accordingly, Equation (8) becomes:

Pr =
πηsysηatmD2

4r2
ρ

θR
Pt. (10)

System efficiency ηsys, atmospheric transmission loss factor ηatm, and the receiver parameter D
can be regarded as constants under the same set-up condition. On the other hand, distance r changes
along the laser propagation and acquisition for different time slices. The reflected laser energy Pr

underlies an inverse range-squared dependency that decreases the intensity captured in the range
gated imaging system. The relationship between reflected laser intensity and distance factor was
studied in previous work [28]. As a result, SNR decreases with distance and causes a higher range error
as deduced from Equation (6). As for ρ

θR
, these parameters vary across image pixels, attributed to the

target reflection characteristics. The effect of target reflection to ranging performance was investigated
in previous work [33]. The reflected laser intensity is proportional to the target surface reflectivity
and the amplitude is maximum when angle of incidence θ = 0 and decreases accordingly with the
increase in angle. Range accuracy has dependency on the SNR, which is proportional to the reflected
laser intensity.

Laser illumination with a diverging lens assembly introduces additional effects on the illuminated
scene, reflection from the target, and image formation. As illustrated in Figure 4, the laser beam is
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diverged to cover a target area within (xmax, ymax) with half diverging cone propagation of angle φ.
x and y represent the horizontal and vertical position of an image pixel with diverging angle θ.

Figure 4. Illustration of range distortion.

Deficiency in straight lines transmission has direct effect on the reflection and image geometry.
The difference between orthogonal distance r and radial distance r′ leads to the range distortion.
Radial distance r′ can be written as:

r′ =
√

x2 + y2 + r2. (11)

Orthogonal distance r is normally used, assuming that the illumination is at the centre or
perpendicular to the image plane. This is the ideal condition where the laser approximates to directional
lighting. In reality, pixels within the angular space close to the illumination centre most likely
receive maximum reflection while other pixels exhibit variation due to the illuminant direction [26,34].
This results in inhomogeneous illumination where intensity decreases as the pixels distance from the
centre of illumination and causes the range distortion.

4. Proposed Range Estimation Model

Theoretically, the system performance can be optimised if the effect of influence factors can be
fully compensated in the range algorithm. Therefore, we propose a new range estimation model
in this section. Specular and diffuse reflection are the fundamental reflection mechanisms that are
practically involved in any target surface. We apply the Bidirectional Reflection Distribution Function
(BRDF) model to describe the reflection behaviours due to the interference of multiple parameters [35]
as follows:

BRDF = BRDFS + BRDFD =
KS

cos6θ
exp(

−tan2θ

s2 ) + KDcosmθ, (12)

where BRDFS and BRDFD denote the specular and diffuse component, respectively. KS and KD are
the specular and diffuse reflection constants, θ is the angle of incidence and reflection, s is the surface
slope, and m is the diffusivity coefficient. These parameters can be estimated from the reflected laser
intensity with respect to the angle of incidence. The BRDF parameters vary depending on the target
surface properties and reflection characteristics. Comprehensive analysis and discussion about target
reflection and the BRDF model are included in previous works [33,35].

3D range gated reconstruction can be treated as one pixel problem where each pixel exhibits the
same characteristics corresponding to the reflected laser pulse [36]. Thus, the same basic principles
of the LADAR range equation apply. Target reflectivity ρ and angular dispersion θR correspond to
the target reflection characteristics. Considering the effect of target reflection, we substitute the BRDF
model Equation (12) into the LADAR Equation (10).

Pr =
πηsysηatmD2

4r2 [
KS

cos6θ
exp(

−tan2θ

s2 ) + KDcosmθ]Pt. (13)
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The temporal function of the transmitted laser pulse Pt(t) is commonly assumed as Gaussian [12]:

Pt(t) =
Po√
2πσp

exp(
−t2

2σ2
p
), (14)

where Po is the transmitted power and σp is the standard deviation of the echo pulse.
From Equations (13) and (14), the reflected laser energy received Pr(t) is written as:

Pr(t) =
πηsysηatmD2

4r2 [
KS

cos6θ
exp(

−tan2θ

s2 ) + KDcosmθ]
Po√
2πσp

exp(
−t2

2σ2
p
). (15)

Based on the time slicing technique used for 3D reconstruction, the summation of radiant energy
in an image pixel I(x, y) = ∑i Ii(x, y) can be equal to the integration over the time slices

∫
dti/tstep as

the time step tstep is much smaller than width of laser pulse and camera gate [12]:

I(x, y) = ∑
i

Ii(x, y) =
∫

Ii(x, y)dti

tstep
. (16)

From Equation (7), we further obtain I(x, y) as:

I(x, y) =
∫

Pr(x, y, t)dt
∫

G(τ)dτ

tstep
. (17)

By substituting Pr(x, y, t) from Equation (15) and assuming G(τ) = 1 when 0 ≤ τ ≤ tgate, I(x, y)
is expressed as:

I(x, y) =
πηsysηatmD2

4r2tstep
[

KS
cos6θ

exp(
−tan2θ

s2 ) + KDcosmθ]
Po√
2πσp

∫ ∞

−∞
exp(

−t2

2σ2
p
)dt

∫ tgate

0
dτ. (18)

We further simplify I(x, y) into:

I(x, y) =
πηsysηatmD2

4r2 [
KS

cos6θ
exp(

−tan2θ

s2 ) + KDcosmθ]Po
tgate

tstep
. (19)

From Equation (19), the camera gate tgate and time step tstep are fixed during the images acquisition.
The compensation factor α to the intensity received in an image pixel can be written as:

α = (
πηsysηatmD2

4r2 [
KS

cos6θ
exp(

−tan2θ

s2 ) + KDcosmθ])−1. (20)

Average two-way travel time for an image pixel < t > (x, y) based on the intensity captured over
times slices can be obtained by considering the compensation factor α:

< t > (x, y) =

n
∑

i=1
(

πηsysηatmD2

4r2 [ KS
cos6θ

exp(−tan2θ
s2 ) + KDcosmθ])−1 Ii(x, y)ti

n
∑

i=1
(

πηsysηatmD2

4r2 [ KS
cos6θ

exp(−tan2θ
s2 ) + KDcosmθ])−1 Ii(x, y)

. (21)

Under the same set-up condition, system efficiency ηsys, atmospheric transmission loss factor ηatm

caused by absorption and scattering, and receiver parameter D can be regarded as constants, which can
be ignored to further simplify the equation. On the other hand, range-squared factor r2 is a variable
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across the time slices. Target reflection could vary depending on the characteristics of the target scene
adhering to the BRDF model. Therefore, Equation (21) can be written as:

< t > (x, y) =

n
∑

i=1
[ KS

cos6θ
exp(−tan2θ

s2 ) + KDcosmθ]−1r2
i Ii(x, y)ti

n
∑

i=1
[ KS

cos6θ
exp(−tan2θ

s2 ) + KDcosmθ]−1r2
i Ii(x, y)

. (22)

Equation (22) can be further simplified where variable ri corresponds to the range value for the
particular ith time slice at delayed time ti:

< t > (x, y) =

n
∑

i=1
[ KS

cos6θ
exp(−tan2θ

s2 ) + KDcosmθ]−1( cti
2 )2 Ii(x, y)ti

n
∑

i=1
[ KS

cos6θ
exp(−tan2θ

s2 ) + KDcosmθ]−1( cti
2 )2 Ii(x, y)

. (23)

Accordingly, we obtain average time < t > (x, y) and range < r > (x, y) as:

< t > (x, y) =

n
∑

i=1
[ KS

cos6θ
exp(−tan2θ

s2 ) + KDcosmθ]−1 Ii(x, y)t3
i

n
∑

i=1
[ KS

cos6θ
exp(−tan2θ

s2 ) + KDcosmθ]−1 Ii(x, y)t2
i

. (24)

< r > (x, y) =
c < t > (x, y)

2
=

n
∑

i=1
[ KS

cos6θ
exp(−tan2θ

s2 ) + KDcosmθ]−1 Ii(x, y)r3
i

n
∑

i=1
[ KS

cos6θ
exp(−tan2θ

s2 ) + KDcosmθ]−1 Ii(x, y)r2
i

. (25)

For the distortion due to the inhomogeneous illumination, two assumptions are made.
Firstly, the distortion ratio is unity at the centre of illumination, i.e., r′ = r and the distortion effect
increases as the image pixels (x, y) move radially from the centre. This radial distortion can be
expressed as [37]:

rd = e + λ(ru − e), (26)

where rd and ru are the distorted and undistorted points, e indicates the centre of distortion, and λ

denotes the distortion ratio. In our case, it is assumed that the centre of distortion equals to the centre
of illumination, which is the image centre, i.e., e = 0. r is considered as the distorted point rd and
r′ is the undistorted points ru. Distortion ratio is equal to unity near the image centre to give r = r′.
This distortion between radial distance r′ and orthogonal distance r can be modelled as:

r = λ(r′). (27)

We propose the distortion ratio λ as a function of the angular difference between r′ and r, which is
bounded by the maximum diverging angle φ. λ can be modelled to decrease with respect to the
angular difference θ(x, y) where 0 < λ ≤ 1.

λ =
r
r′

= cosθ(x, y). (28)

The distortion effect due to the inhomogeneous illumination can be regarded as radially symmetric
because the lenses are typically ground to be circularly symmetric. Thus we make the second
assumption that the distortion is radially symmetric within the illuminated area (xmax, ymax). θ(x,y)
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can be determined from the position of the image pixel (x, y) relative to the centre of illumination (0, 0)
and the maximum diverging angle φ:

θ(x, y) = (

√
x2 + y2√

x2
max + y2

max
)φ. (29)

Accordingly, we formulate the distortion ratio λ as:

λ = cosθ(x, y) = cos[(
√

x2 + y2√
x2

max + y2
max

)φ]. (30)

By considering the distortion correction, radial distance r′ is obtained as follows from
Equation (27):

r′ =
r
λ

. (31)

From Equations (25) and (30), the average range is then corrected as < r′ > (x, y). Eventually,
we propose a range estimation model as follows:

< r′ > (x, y) =
1

cos[(
√

x2+y2√
x2

max+y2
max

)φ]

n
∑

i=1
[ KS

cos6θ
exp(−tan2θ

s2 ) + KDcosmθ]−1 Ii(x, y)r3
i

n
∑

i=1
[ KS

cos6θ
exp(−tan2θ

s2 ) + KDcosmθ]−1 Ii(x, y)r2
i

. (32)

5. Model Validation and Results Analysis

Based on the range gated imaging system specification, we can estimate the range accuracy using
Equation (6) as explained in Section 3. Table 1 shows the experimental set-up specification used and
the resulted range accuracy δr ≈ 8.894 mm in the ideal scenario. The corresponding depth error can be
calculated as:

% depth error =
δr

actual object depth
× 100%. (33)

where δr is the range accuracy or deviation of the reconstructed depth from the actual object depth
reference which is measured manually with ruler. In our experimental study, Object 1 and Object 2
are tested where Object 1 has higher reflectivity relative to Object 2. Figure 5 shows the raw grayscale
image of the test objects acquired using the range gated imaging system. The actual object depth of
the test objects are 0.48 m and 0.4 m measured from background respectively. With the system range
accuracy δr ≈ 8.894 mm, it is estimated to give depth error≈1.85% and 2.22% for Object 1 and Object 2,
calculated from Equation (33). This unavoidable error calculated from the ideal experimental set-up
specification is a rough estimation and deviation of the depth error is expected.

Table 1. Range accuracy estimation based on the experimental letup specification.

Specification/Parameter Value

Laser pulse width 4 ns
Camera gate time 5 ns

σ ≈9 ns
tstep 100 ps

max(Ii) 28

SNR ≈151.79
δr ≈8.894 mm
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(a) (b)

Figure 5. Raw image of the test objects captured by the range gated imaging system. (a) Raw image of
Object 1. (b) Raw image of Object 2.

The range value for each pixel is calculated from the sequence of 2D images of the target scene
using the conventional weighted average [12], range compensation [28], and the proposed range
estimation model. From Equation (2), weighted average range is determined as:

< r > (x, y) =
c < t > (x, y)

2
=

n
∑

i=1
Ii(x, y)ri

n
∑

i=1
Ii(x, y)

. (34)

Meanwhile, the range compensation model is expressed as:

< r > (x, y) =

n
∑

i=1
Ii(x, y)r3

i

n
∑

i=1
Ii(x, y)r2

i

. (35)

The proposed range estimation is calculated based on Equation (32). The calculated range for
all image pixels eventually reconstruct the 3D surface of the test object. The 3D depth map shows
the distance of the target scene to the camera. Accordingly, the reconstructed object depth can be
determined from the difference between the maximum and minimum depth value. Absolute depth
error between the reconstructed object depth and the actual object depth is calculated as follows:

% absolute depth error =
|reconstructed object depth− actual object depth|

actual object depth
× 100%. (36)

The evaluation results are summarised in Table 2. Additionally, the results are compared to the
estimated error per range gated imaging set-up specification in the ideal scenario. As the test objects
have homogeneous surface material, target reflection BRDF compensation is not considered because
the reflectivity is assumed to be uniform throughout the object surfaces. Based on the conventional
weighted average method, depth errors of 12.65% and 14.11% are observed for Object 1 and Object 2.
With the range compensation model proposed in previous work, the depth error of the objects are
reduced to 5.42% and 8.11%. The proposed range estimation model further improves the reconstruction
where the depth error reduces to 2.26% and 2.93% for Object 1 and Object 2, respectively. The proposed
range estimation model results in smaller depth error as compared to the weighted average model
that is commonly used and further refines the range estimation to give better accuracy than the range
compensation model. Figure 6 shows the graphical comparison of 3D surface reconstruction based
on weighted average, range compensation, and the proposed range estimation model for Object 1
and Object 2, respectively. As can be seen from Object 2, which is less reflective, the proposed model
succeeds in reconstructing the eyebrows and the right eye. It also gives a uniform reconstruction in the
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neck area as compared to the weighted average method. The reconstructed background of the overall
scene is more uniform as well. From the results, the proposed range estimation model outperforms the
conventional weighted average and range compensation model to give a better range estimation for
3D range gated reconstruction.

Table 2. Absolute depth error (%) calculated based on the conventional weighted average, range
compensation, and the proposed range estimation model as compared to the estimated depth error per
set-up specification in ideal scenario.

Test Object Depth Error per Weighted Average Range Compensation Proposed Range
Setup Specification Model Model Estimation Model

Object 1 1.85% 12.65% 5.42% 2.26%
Object 2 2.22% 14.11% 8.11% 2.93%

(a) (b)

(c) (d)

(e) (f)

Figure 6. 3D surface reconstruction based on the conventional weighted average, range compensation,
and the proposed range estimation model for test objects. (a) Weighted average model for Object 1.
(b) Weighted average model for Object 2. (c) Range compensation model for Object 1. (d) Range
compensation model for Object 2. (e) Proposed range estimation model for Object 1. (f) Proposed range
estimation model for Object 2.
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In addition, various target surface materials are tested. 3D range gated reconstruction can be
treated as one pixel problem where each pixel exhibits the same characteristics corresponding to the
reflected laser pulse [38]. Therefore, we perform an experimental study based on the reflected laser
pulse using the set-up shown in Figure 7. The laser is emitted towards the flat target surface and returns
a reflected signal. Photodetectors detect the emitted and reflected laser pulse to determine the range,
which is the distance between the target surface and the photodetector. This experiment evaluates
the ranging performance for different target surface materials based on the single pixel principle
where some effects are excluded, for instance, the camera efficiency and noises. Results based on
30 measurements are summarised in Figure 8. The range error shown refers to the deviation between
the calculated range and the actual range measured manually with ruler. The resulted range error
using the proposed range estimation model is compared to the conventional weighted average [12]
and range compensation model [28]. In general, the range error observed from the weighted average
method is higher for a weak reflective target surface material such as wood. The range compensation
model is able to improve the range determination but not for all cases. From the results, it can be seen
that the proposed model consistently reduces the range error with lower relative standard error for the
tested target surfaces.

Figure 7. Schematic diagram of the experimental set-up for reflected laser investigation.

Figure 8. Range error comparison for various target surfaces calculated based on the conventional
weighted average, range compensation, and the proposed range estimation model.

6. Conclusions

Performance of 3D range gated reconstruction is strongly influenced by various factors in the
system despite the advancement in lasers, sensors, signal processing, and computer technology. In this
paper, detailed modelling of 3D range gated reconstruction and the range accuracy analysis are
demonstrated to provide a comprehensive understanding of the influence factors and their impact to
the system performance. Correspondingly, we propose a new range estimation model to address these
influence factors to accomplish accurate reconstruction.
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Based on the operating principle of time slicing technique, fundamental of radiant energy, LADAR,
and BRDF, theoretical derivation of the range gated reconstruction model is presented. The derived
model shows the relationship and dependency of various parameters with respect to the reflected
laser intensity, SNR, and range accuracy. Accordingly, the algorithm of range estimation is improved
by considering the energy attenuation and intensity variation due to distance and target reflection,
and range distortion because of the inhomogeneous illumination. From the experimental results,
the proposed range estimation model shows a noticeable improvement as compared to the conventional
weighted average model, which proves the validity of the formulation presented. By comparing the
results to the accuracy estimated from the set-up specification, the proposed model is able to achieve
comparable performance.

In future, the proposed model can be a reference for ranging improvement, which contributes to
miscellaneous applications. The range gated reconstruction presented in this study strongly relies on
the reflectivity and range/time information associated with the images captured. Therefore, this is not
suitable for non-reflective target and dark surface where weak or lack of laser intensity return will be
encountered. For example, a black object absorbs the incoming laser and does not reflect any.
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