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Abstract—With the advancements of Internet-of-Things (IoT)
and Machine-to-Machine Communications (M2M), the ability
to generate massive amount of streaming data from sensory
devices in distributed environment is inevitable. A common
practice nowadays is to process these data in a high-performance
computing infrastructure, such as cloud. Cloud platform has
the ability to deploy Hadoop ecosystem on virtual clusters. In
cloud configuration with different geographical regions, virtual
machines (VMs) that are part of virtual cluster are placed
randomly. Prior to processing, data have to be transferred to the
regional sites with VMs for data locality purposes. In this paper,
a provisioning strategy with data-location aware deployment for
virtual cluster will be proposed, as to localize and provision the
cluster near to the storage. The proposed mechanism reduces the
network distance between virtual cluster and storage, resulting
in reduced job completion times.

I. INTRODUCTION

In todays computing environment, virtualization technology

is replacing traditional physical data processing platforms due

to its high scalability and availability. Cloud computing pro-

vides an avenue for such technology to rapidly evolve by vir-

tualizing processing and storage platforms either through ser-

vices such as Platform-as-a-Service (PaaS) or Infrastructure-

as-a-Service (IaaS). OpenStack is one of the examples of cloud

computing platforms for managing large pools of compute and

storage nodes, networking resources, and software stacks that

spread throughout multiple data centers. It allows applications

to be deployed more dynamically, and provides a basis for

IaaS, PaaS and Software-as-a-Service (SaaS) implementations.

Hadoop is a distributed and scalable data processing frame-

work that can be deployed across multiple computing clusters

[12]. Hadoop enables data partitioning and computation on

numerous hosts, and performing parallel computations close

to the data [9]. Conventional Hadoop systems run on physical

commodity hardware with local computing and storage capa-

bilities. The distributed property of Hadoop however, makes

it suitable for virtual Hadoop cluster provisioning in cloud

computing platform such as OpenStack [2].

Although Hadoop virtual clusters are able to perform au-

tomation and higher utilization of shared infrastructure, the

performance of Virtual Hadoop is still an open problem. In

cloud implementations, the VMs in which Hadoop cluster is

being deployed are attached to virtual storage volumes over

the network. Although cloud provides numerous advantages,

virtual Hadoop clusters introduce their own set of challenges

[3], [8].

One of the major challenges is the lack of data locality in

virtual Hadoop deployments on cloud [5]. A key disadvantage

of running Hadoop on the cloud is such that it is not aware

of the underlying cloud infrastructure. Hence, Hadoop reads

and writes data to nodes not knowing the latency between

them, resulting in increased job completion time. In order to

improve the transfer time, a location aware virtual placement

strategy for virtual Hadoop cluster deployment should be put

into consideration.

The distributed nature of cloud deployments inhibits the

possibility for common storage platform implementations.

Distributed storage models, such as Network Attached Storage

(NAS) or Storage Attached Networks (SAN) are not suitable

for Hadoop deployment due to the additional network over-

head imposed, violating the Hadoop data locality principal

[13]. Nevertheless, running Hadoop on the cloud [1], [11] has

some benefits that outweighs its drawbacks. Nguyen and Shi

[4] implemented a distributed cache system in which the data

is cached persistently in the compute cluster. The respective

data is not removed during the VM termination to reduce data

movement. Dynamic VM reconfiguration as proposed by Park

et al. [6] performs adjustments the computing capability of

VMs, in order to maximize resource utilization. Palanisamy et

al. [5] analyzes the network flows between devices that store

the input/intermediate data and those that process the data.

Due to lack of data locality in cloud implementation,

network latency has been the main focus area of performance

improvements in virtual Hadoop deployments [7]. It is vital

to achieve high data locality in such environments due to the

transfer of data over the WAN network connecting multiple

geographically separated regions.

This paper presents an investigative work on the effects of
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data locality in virtual Hadoop setup on cloud. The perfor-

mance analysis conducted identifies network latency as a key

factor impacting the performance of virtual Hadoop clusters

on the cloud. Network latency is analyzed with regards to lack

of data locality and a mechanism to address such issue will

be proposed.

This paper is structured as follows: Section II describes the

data locality issue in cloud, specifically with regards to Hadoop

cluster deployment. A discussion on location-aware scheduling

to address data locality issue in virtual Hadoop deployment

is presented in Section III. Section IV presents the proposed

framework design for location-aware scheduling. Results of

analysis is presented in Section V. Finally Section VI con-

cludes the paper.

II. DATA LOCALITY CONSIDERATION

Data locality is a concept commonly being considered in

large-scale distributed systems such as cloud, that aims to

process data close to the storage location in order to reduce

data movement between compute and storage facilities [10].

The overall concept of data locality is depicted in Fig. 1.

Fig. 1. Worker node with data locality and without data locality.

In order to consider data locality, files are broken into

small chunks called blocks in Hadoop Distributed Filesystem

(HDFS). Each block is mapped to a task for data processing.

During MapReduce session, Hadoop utilizes the data block

location information to run the job directly on the node that

host the data. Hadoop‘s data replication policy means it has a

few hosts to select from.

VMs in virtual Hadoop cluster are randomly instantiated in

compute nodes and are attached to persistent block storage

devices over the network. With this configuration, data have

to be moved across the network interconnects for processing.

If the cloud infrastructure stretches across different regions,

data has to be transferred over the internet to the region where

the compute node resides. For large cluster, excessive network

bandwidth congestion will be experienced, resulting in system

performance deterioration.

In the following subsection, we present a case study on a

distributed private cloud architecture.

A. Case Study: Distributed Private Cloud Architecture

The proposed solution is designed for virtual Hadoop im-

plementations in distributed OpenStack private cloud archi-

tectures. In the context of this work, distribution refers to

locations involving several geographical sites. For example:

A business corporation with multiple branches where each

has its own compute and storage facilities. A controller node

in the main office controls these large pools of resources

(compute, storage, network) across all the branches. The

controller recognizes each branch as a separate entity in the

cloud. Each region will execute all standard nova services,

with exception of the nova-api. The top level region in which

the controller resides (headquarters) will run the nova-api

service.

Fig. 2 illustrates the assumed structure for the private cloud

architecture. The corporate office has 3 regions namely R1,

R2 and R3 and headquarters (HQ). Each region has its own

compute and storage facilities. The controller in HQ controls

all requests in and out of the cloud platform.

Fig. 2. Assumed structure for private distributed cloud architecture with three
regions (including HQ).

Given that the server nodes are organized into R racks with

N nodes each. Each node is then consists of p processors and d

disk units, and all nodes are connected to a Rack Switch (RS).

The uplinks of these switches are connected to a single cluster

switch or router. This simple arrangement constitutes a total

of R×N × d disks with a minimal resource requirements in

networking components. Each branch has its own dedicated

storage. The following example shows a common use case

scenario for data locality consideration.

If Branch-A requires analysis on their data, a request will

be sent to HQ to instantiate a cluster. The HQ will create

a cluster based on the resources available in the cloud. The

VM placements of the cluster are based on availability. If the

controller has placed the VMs in Branch-B, the data from

Branch-A will be moved to Branch-B. Once the jobs are
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completed the results will be returned back to Branch-A. The

amount of I/O bound operations will impose a significant load

on both storage and network. An increasing amount of load is

being put on the network bandwidth due to the lack of data

locality consideration.

B. Impact of Data Locality towards Hadoop Deployment

Consider a physical Hadoop cluster with 15 nodes is

launched to process over 100GB of input data. All the nodes

in the cluster are configured as HDFS data nodes. HDFS is

configured to use 128MB block size (800 maps created) with

replication factor of 3. Once the mapreduce job is launched

Hadoop attempts to schedule as many as data-local maps as

possible to reduce latency.

Another virtual Hadoop cluster identical to the above men-

tioned configurations was launched in the cloud. All 15 virtual

nodes in the cluster are configured as HDFS data nodes. As

expected Hadoop will schedule as many data local maps as

possible, but Hadoop is not aware of the fact that all disk

volumes of the HDFS data nodes are located in different

physical storage nodes and are attached to the virtual nodes

via the network.

Since the Hadoop job scheduler does not have knowledge

of physical nodes in the cloud, it will only guarantee that the

map task is assigned to the virtual node, which is attached

to the storage volumes, which has the data for the assigned

map task. The Hadoop scheduler does not takes the latency

between the virtual node and the attached storage volume into

account when assigning map tasks.

On the other hand, Openstack has the physical architecture

of all compute and storage nodes, yet when virtual nodes are

scheduled for virtual Hadoop clusters, the latency between

storage and compute nodes is not considered. The virtual

nodes are randomly placed on compute nodes based on avail-

ability of resources. In a distributed cloud environment, virtual

nodes will also be placed in different regions increasing the

network latency since the data has to travel through the WAN

network.

Sahara, a tool for cluster deployment on OpenStack plat-

form can be configured to use empirical storage (volumes

attached to nodes), persistent storage (cinder blocks) or object

storage (swift). Empirical storage provides better data locality,

because it runs HDFS on physical disk volumes attached to the

compute nodes. The major drawback of this model being that

data lives as long as the cluster lives, if the cluster is deleted

the data also gets deleted. Another drawback is such that data

resides on storage volumes attached to compute nodes, hence

the storage space is limited to the capacity of the compute

node. The above drawbacks means empirical storage violates

the policies of cloud computing making it a bad storage model

to be implemented for HDFS.

Persistent block storage provided by Cinder attaches disk

volumes residing in storage nodes to VMs in compute nodes

via the network. In this model the data is independent of the

cluster hence the data does not get deleted with the life time

of the cluster. Since storage nodes are separated from compute

nodes, the storage capacity can be increased on demand. Even

though cinders storage model suits the cloud framework and

overcomes the drawbacks of empirical storage, it comes at the

cost of data locality. The network latency between the compute

nodes and the storage nodes means slower job completion

times. The more the latency the slower the job completion

time impacting performance of the Hadoop cluster.

Swift object storage also separates the compute resources

from storage resources. This is beneficial if long term storage

needs a required and data processing is only done periodically.

Table I depicts the benefits of using different storage models.

TABLE I
DATA LOCALITY WITH DIFFERENT STORAGE MODELS.

Ephemeral Block Object
Storage Storage Storage

Used to Run OS and Add additional Store data,
scratch space persistent storage including

to VM VM images

Accessed A file system A block device The REST
through that can be API

partitioned, formatted,
and mounted (such

as, /dev/vdc)

Access Disk I/O Network Link Network Link
latency (iSCSI, FC)

Accessible Within Within Anywhere
from a VM a VM

Managed by nova cinder swift

Persists VM is Deleted Deleted
until terminated by user by user

Sizing Size settings User Amount
determined by (flavours) specifications available

Typical 10GB first 1TB disk 10s of TBs
usage disk, 30GB of dataset

second disk storage

III. LOCATION-AWARE PROCESS SCHEDULING

In this work, our primary objective is to minimize communi-

cation latency in cloud-based Hadoop deployment by placing

VMs in virtual Hadoop cluster close to the storage node. The

reduction in network distance will result in improved network

transfer time. MapReduce jobs are highly dependable on the

file transfer time. Smaller transfer time will result in faster

MapReduce job completion.

Although reduction in network distance will improve data

locality, most of the existing works overlook the ad-hoc prop-

erty of a cloud environment. Virtual deployment of Hadoop

has the adaptability of provisioning clusters on demand in dy-

namic locations within few minutes. In comparison to a phys-

ical Hadoop cluster with static location, the dynamic location

property of a virtual cluster allows us to move computation to

the data on demand. Fig. 3 depicts moving computation close

to the data to avoid performance degradation due to the data

transfer over the network. However, there are two conditions

to be met by OpenStack in order to provision the cluster close

to where the data resides: (1) OpenStack need prior knowledge

of where the data is located. (2) A location-aware scheduling
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strategy to identify the physical hosts based on the input data

location [10].

Fig. 3. A conceptual representation of moving computation to data.

The proposed solution is broken into two parts. Firstly, to

identify data location and secondly, to create a customized fil-

ter for the scheduler for mapping the data location information

to the compute node location, for VMs placements. In physical

Hadoop environment, prior knowledge of data location is not

important since clusters are provision first. In this work, we

propose to provision virtual clusters close to the storage nodes.

The significance of placing the VMs in the right region is

illustrated in Fig. 4, here the different geographical regions

are named as R1, R2, R3 and R4. A user from R3 requests

the controller in R1 to provision a cluster of six nodes from

R3. The controller uses the default nova scheduler to filter

the available compute nodes and places the requested virtual

machines on the highest weighted compute node. The process

is repeated until all six virtual machines are provisioned.

Looking at the results the scheduler has placed VMs 1 to 3 in

R3, VM 4 in R2, VMs 5 and 6 in R4.

Fig. 4. Data location-aware VM placement: (a) Default nova scheduler (b)
Location aware nova scheduler. (Adopted from [10]

OpenStack-Cinder will provision HDFS block storage vol-

umes to all six virtual machines from the allocated block

storage volumes of the region they belongs to. For example:

VMs 1 to 3 will be assigned to storage volumes from R3

and VM 4 and 5 from their respective regions. Since data

to be processed resides in R3 it has to be transferred to the

volume in R2 and R4 or otherwise, VMs 4 and 5 should be

pointed to the volumes in R2 and R4. Assuming we consider

the latter case as our example, once a MapReduce job is

executed, data nodes 1 to 3 will be accessing the data through

local network since their volumes reside in R3. This is not

the case for nodes 4-6 as they need to access the data across

the network, resulting in slow job completion time impacting

system performance. Our proposed scheduler with data locality

consideration will localized all the VMs in R3. By doing this,

the network distance will significantly decreased, hence all the

VMs can access the data via local networks.

IV. PROPOSED FRAMEWORK DESIGN

An instance scheduling process can be categorized as one

of complex operation carried out by the nova scheduler.

Given the complexity of the problem, nova scheduler process

scheduling requests one at a time even in multiple instance

requests as to reduce the complexity. The scheduler only

deals with one VM request at time; this behavior reduces the

delay introduced by the scheduling process. The computational

load on the controller is minimized, compared to a multiple

instance request process. This philosophy fits well into the

remote procedure call (RPC) based message queue used by

all OpenStack components. In order for the proposed solution

to be compatible with the current Filter Scheduling framework,

we decided its best not to change the native OpenStack code.

The possible options available to implement a custom filter

scheduler for OpenStack are as follows:

• Write a substitute of the current Filter Scheduler in

Python.

• Write an entirely new custom filter in Python.

• Find a combination of the available filters that fits well.

• Implement a custom algorithm for the cost function of

the filter scheduler.

We have implemented our proposed solution as weight

and cost functions that can be plugged into to the existing

filter scheduler. OpenStack uses a driver based architecture

for customizing OpenStack features. A custom function or and

algorithm can be written as a driver and be plugged into the

OpenStack configurations. This kind of architecture gives the

flexibility of modifying OpenStack without disturbing the core

project. The scheduler is one such component which can be

customized using the driver architecture, we have fully utilized

this flexibility to implement our proposed solution into the

OpenStack filter scheduler. As mentioned above these function

will be applied to scheduling one instance at a time.

Fig. 5 depicts the proposed solution. A user will create the

necessary MapReduce job binaries for the analysis and save

them in OpenStack Sahara. When user is ready to execute

an analysis job, the input and output directory URL need

to be specified first. Next the user will create the cluster

configurations specifying the number of master nodes and

number of data nodes required for the cluster. Once the user

request to launch the cluster, the request will be converted to

REST calls and passed to the nova-api. The nova-database

will pick up the request and place it on the queue.

The nova-scheduler will pick the request from the queue

and call the nova scheduler. Nova scheduler will compare the

resources available on each physical node with the resources

requested for the first VM. All physical hosts with sufficient

resources will be filtered by filter scheduler. Then, all filtered
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Fig. 5. The proposed location-aware scheduling framework for Hadoop
deployment on cloud.

hosts will be send to the weighting stage to determine the host

to place the virtual machine. The weighting function consist

of multiple cost functions, Location aware cost function will

execute traceroute to determine the hop count from the input

data location to filtered host. The RAM cost function will

determine the available RAM in each filtered host and assign

a cost value.

The weight function will then be called to calculate the sum

of all the cost functions and multiply by the weight constant

defined in nova.conf file. The physical host with the lowest

weight will be returned back to the queue as the selected host

to place the virtual machine. The process will be repeated

until the number of selected host is equal to the number of

total nodes specified in the cluster.

Location-aware cost function takes into account the distance

to the input data location from each host. Distance refers

to the number of hops from the input data location to the

filtered compute host. The hop count will be calculated for

each filtered physical host. The host with the lowest hop count

will be chosen to the place the virtual machine.

Determining the total cost of each node is the most essential

part in the Location Aware Scheduling algorithm as depicted in

Fig. 6. We will be using a Location-Aware Cost function fLAC

which takes the hop count and available RAM to calculate the

total cost of each physical cost.

In general location aware cost function can be described by

the following algorithm:

fLAC(r, d) = αR(r) + βD(d) (1)

Where:

• r : free resources available on the host.

• d : Network distance between the input data source and

the filtered hosts on the same OpenStack deployment.

• R,D : cost functions taking into account the probably

non-linear behavior of the variables.

• α, β : real number weights.

Fig. 6. Proposed location aware scheduling algorithm.

In context of the filter scheduler the Location-Aware Cost

function can be described as follows:

fLAC(r, d) =
∑

p

[αpRp(rp)] + βD(d) (2)

Where:

• R : Cost functions for all the resources already included

in the OpenStack. R provides a function to determine free

RAM and another function to track the number of failed

scheduling attempts.

• D : Hop count from the filtered host to the input data

location.

• α, β : real number weights listed in the nova.conf file.

Given the nature of the Location-Aware Cost function elab-

orated above, our goal will be to find the values maximizing

the function. It is best to note that the filter scheduler takes

the least cost value, hence the results has to be multiplied by

−1 in order to find the maximum value.

V. RESULTS AND ANALYSIS

In this section we discuss the performance of cloud based

Hadoop cluster with the proposed Location aware virtual

machine scheduler in place. In order to test our proposed

solution, we executed the TeraSort benchmark suit with the

The 22nd Asia-Pacific Conference on Communications (APCC2016)

978-1-5090-0676-2/16/$31.00 ©2016 IEEE 107



proposed Location scheduler configuration. TeraSort combines

high CPU utilization, high storage disk I/O throughput and

moderate networking bandwidth. In order to understand the

impact of location aware scheduling, we have made a compar-

ison between results obtained from TeraSort benchmark with

the results of similar benchmark conducted using OpenStack

default filter scheduler. This comparison of results will provide

better indications on the benefits of location aware scheduling

in cloud based Hadoop environments. Throughout this section

we will refer to the default filter scheduler as “FS” and location

aware filter scheduler as “LS”.

A Hadoop virtual cluster have been configured for this

experiment. The cluster had all 3 nodes places in three

homogenous physical nodes (having similar configurations).

The Hadoop cluster node configurations are listed in Table II.

TABLE II
EXPERIMENTAL HADOOP CONFIGURATIONS.

Master Node Processor: 2 Virtual Cores
Memory: 4GB
Storage: 40 GB

Data Node Processor: 2 Virtual Cores
Memory: 4GB
Storage: 40 GB

OpenStack Sahara was used to launch the Hadoop cluster.

A comparison of TeraGen job completion time between

FS and LS is illustrated in Fig. 7. The overall trend of the

graph suggests writing different sizes of data to a cluster with

location aware placement is significantly faster as compared

to writing data to a cluster with random placement of virtual

machines. The writing time reduces by 34% when the data

size is 1GB. A reduction 11-15% achieved when the data

sizes increase to 3GB and 5GB respectively. Since the nodes

are close to each other in location aware placement the write

latency is reduced.

Fig. 7. TeraGen Job completion time comparison.

Fig. 8 depicts a comparison of TeraSort job completion

time between FS and LS based virtual placement. As expected

the job completion increases with the increase in sorted data

file size for both FS and LS virtual machine placement.

However, comparing it to FS placement, the overall TeraSort

job completion is significantly reduced with location aware vir-

tual machine placement. Similar behavior was noticed earlier

during TeraGen job execution with LS based virtual machine

placement.

Fig. 8. TeraSort Job completion time comparison.

VI. CONCLUSION

In this paper, we present the current virtual Hadoop ar-

chitecture and identify data locality as the key characteristic

in deteriorating system performance. To achieve better data

locality, we proposed a framework to identify the location of

the data before clusters are provision, this method allows to

provision clusters with least amount of network distance to

data. We implemented this solution by improving the current

filter scheduler in OpenStack to accept the network proxim-

ity to the storage node as additional parameter during the

weighting stage. Our proposed solution was verified through

TeraSort benchmarking suite and comparing the results with

the TeraSort benchmarking results of standard OpenStack filter

scheduler. As hypothesized our proposed data locality tech-

nique improves the performance MapReduce job completion

time of cloud based Hadoop deployment.
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