
85

Implementation Approach of Unit and Integration

Testing Method Based on Recent Advancements in

Functional Software Testing

Zheng Yang Joel Tan, Mohammed Mahedi Hasa, Man Yi Wong, R

Kanesaraj Ramasamy

Faculty Computing and Informatics, Multimedia University

kanes87@gmail.com

Abstract. Finding bugs and flaws, detecting invalid or inaccurate functionality,

and analyzing and certifying the entire software product all require software testing.

We looked at unit testing and integration testing in this project since they are two

fundamental stages of software testing and are significantly associated. For both

unit and integration testing, a sufficient number of testing methodologies and

approaches have been assessed and contrasted, with each implementation system,

algorithm, and technique being thoroughly scrutinized. Some of them are effective

in finding as many hidden defects as possible while also reducing testing

complexity, time, and expense. In this context, we chose sOrTES, a stochastic

scheduling support tool that would be utilized for manual integration test cases. The

chosen strategy is the most appropriate since empirical evidence reveals that it can

prevent around 40% of testing failures while also increasing requirement coverage

by 9.6%.

Keywords: integration testing, unit testing, software testing, class integration

test order, functional testing, test optimization, stochastic test scheduling,

dependency.

ISSN 1816-6075 (Print), 1818-0523 (Online)

Journal of System and Management Sciences

Vol. 12 (2022) No. 4, pp. 85-100

DOI:10.33168/JSMS.2022.0406

mailto:kanes87@gmail.com

Tan et al, Journal of System and Management Sciences, Vol. 12 (2022) No. 4, pp. 85-100

86

1. Introduction

Software testing is one of the most challenging steps in the whole software

development process. Proper testing needs a methodical approach for evaluating and

verifying a software product to detect bugs, faults, and gaps which also leads to

finding the correctness of behavior and performance of the software. Software testing

can be classified into two main aspects, functional testing, and non-functional testing.

The scope of this paper is to cover only the first and second stages of functional

testing known as unit testing and integration testing. We found many relevant

methods for the unit and integration testing. Afterward, we evaluated and compared

those methods to select the most suitable one for using in new software.

Unit testing is considered the first stage of software testing levels. In this stage,

each individual unit or component of the software is tested to verify if the intended

functionality works properly. In test-driven development (TDD), unit tests are created

even before the programmers write the actual code for the software. The written code

is considered complete when the unit test is passed. We have reviewed a few unit

testing methods, algorithms, and methodologies. For example, Zhang et al. (2019)

focused on preconditions of individual functions and proposed the rule-directed

symbolic execution approach using a tool, CTS-IC (Code Testing System with

Implicit Constraint), which was able to obtain good coverage of the function even

when preconditions were missing. Menendez et al. (2022) introduced a unit test

generation tool named OutGen, which implements an automatic output sampling to

provide unit test sets with diversified output. On the other hand, Nassif et al. (2021)

proposed a technique called DScribe, which is tool-supported and complies with the

co-generation of unit tests and documentation. Alternatively, Cerioli et al. (2021)

presented a tool TestWizard, for automatically assessing the unit test method if it is

coherent to its specification. An interesting use case for this unit testing method is

that it can be used to elevate the performance testing procedures. To minimize the

practical obstacles while applying the unit testing for performance testing, Bulej et al.

(2017) introduced an algorithm named Stochastic Performance Logic (SPL). Overall,

all the analyzed methods and tools proposed by various researchers for unit testing

are mostly used targeting automated unit testing.

After unit testing, integration testing is the next step in the software testing

process. Software testers use integration tests to assess the performance of individual

components as a whole and uncover any issues with the interface between modules

and functionalities. Various research papers have been reviewed to find and evaluate

integration testing approaches in software testing. Class Integration Test Order (CITO)

which decides the order, in which the detection of inter-class faults occurs, has been

discussed by Zhang et al. (2021) and Jiang et al. (2021). Their main objective was to

reduce the overall stubbing complexity and the costs in problem space.

Tan et al, Journal of System and Management Sciences, Vol. 12 (2022) No. 4, pp. 85-100

87

Zhang et al. (2021) used identical class dependence (ICD) and symmetric classes

(SC) to get the same types of classes and introduced a cycle-breaking algorithm for

the integration testing. On the other hand, Jiang et al. (2021) proposed ConCITO, a

test order strategy to control coupling that improves existing stubbing cost and

complexity. Zhang et al. (2019) introduced the Particle Swarm Optimization (PSO)

algorithm in another paper to achieve precision and speedy convergence for creating

test orders. Czibula et al. (2018) proposed Reinforcement Learning (RL) to minimize

the stubbing effort and reduce time. Other than the CITO approach, some researchers

proposed machine learning methods. For instance, Lima et al. (2019) mentioned that

in the Continuous Integration (CL) environment, the test case prioritization (TCP)

technique finds the appropriate order of test cases which improves the overall fault

detection. Furthermore, Yang et al. (2021) proposed the Reward with Additional

Reward method where Test Occurrence Frequency (TOF) finds the failure effect of a

test case. Another unique method was the time-window-based reward function that

considers test cases with failure quantities and failure distribution. One of the most

remarkable methods proposed by Tahvili et al. (2019), where the researchers

introduced a supportive tool for stochastic scheduling of manual integration test cases

known as sOrTES. sOrTES, the Python-based tool, schedules manual integration test

cases in natural language text.

After evaluating the approach of sOrTES, we finally chose sOrTES as the

recommended method for this project. During the early phases of testing, sOrTES can

help testers better understand the dependencies for the testing requirements. Tahvili

et al. (2019) mentioned that about 40% of testing failures could be avoided using the

proposed execution method of sOrTES. Moreover, the adopted method should reduce

human judgment when deciding which test case to run first. Finally, we can expect a

better outcome when applying sOrTES in a new software product.

The objectives of this project are formulated as follows:

1. To study the existing unit and integration testing techniques.

2. To evaluate various methods of the unit and integration testing.

3. To understand how the method or algorithm works, designed and implemented

for testing software.

4. To select the most suitable method for the unit or the integration testing by

comparing the existing methods.

Selecting the suitable method to conduct the unit or the integration testing is

crucial in software testing. This project could help to find the suitable method for the

unit or the integration test by comparing many existing noble test approaches. During

the selection of the suitable method, we will check the method in detail to see how

the method works, how the algorithm is designed and finally, how we can implement

that algorithm for testing. The selected method will be used to test an existing software

product where the ultimate target is to reduce the test complexity as well as to detect

Tan et al, Journal of System and Management Sciences, Vol. 12 (2022) No. 4, pp. 85-100

88

more functional faults and bugs. Furthermore, choosing a suitable method could

reduce the testing time and the cost of either testing.

2. Literature Review

This section summarizes the papers, which have proposed their own methods, into

Table I. The advantages, as well as the limitations or challenges of each method, are

summarized to provide an overview of the methods. This table is mainly used to show

the advantages and limitations of each method clearly. In addition, from Table I, it

can be found that the literature review performed focuses on integration testing. As

integration testing is normally performed after unit testing, the studies on unit testing

are mainly aimed to understand the steps prior to integration testing better.

In Table I, there are several algorithms, methodologies, frameworks, and tools

introduced to optimize the testing process. It is clear that each method has its own

advantages and limitations, thus the selection of the test method should depend on the

system under test (SUT). For example, some methods are not suitable for large

systems. Furthermore, even though all methods have been proven to be effective in

certain situations, they do not experiment with large amounts of datasets. Some

methods are not implementation-friendly as they are too complicated. Therefore,

when determining the method that will be used to test the SUT, the limitations and

challenges of the method should be taken into consideration.

Table 1: Summary table of the paper reviewed

Method
Testing Type

(Integration/Unit)
Advantages Limitations/Challenges

Combining similar-class

with dependency (Zhang

et al., 2021)

Integration

This method obtained lower

stubbing costs compared to

traditional methods. Also,

the cycle numbers were

minimized for similar

classes, reducing the problem

space without hampering the

performance.

The researchers have not

tested their method for

various programming

languages, so the

generalizability of this

method still needs to be

explored.

ConCITO (Control

Coupling Class

Integration Test Order

Generation (Jiang et al.,

2021)

Integration

Generated CITO with less

overall stub complexity,

lowest stub cost in shortest

execution time.

Does not check the source

code that may affect the

authenticity of path

conditions.

Multi-level feedback

approach, MLFCITO

(Zhang et al., 2017)

Integration

Provided shortest execution

time, less time consuming,

generate test order with less

overall stubbing complexity

for large-scale systems.

Not suitable for use in

small systems as

execution time is the same

as other algorithms.

Tan et al, Journal of System and Management Sciences, Vol. 12 (2022) No. 4, pp. 85-100

89

Multi-granular flow

network (MGFN) model

(Wang et al., 2018)

Integration

Able to test higher risk

classes in early integration

steps and minimize overall

complexity of established test

stubs.

Only 3 software were

selected for testing with 2

other algorithms,

resulting in limited test

results.

Particle swarm

optimization algorithm

(Zhang et al., 2019)

Integration

Great precision and fast

convergence speed to

generate CITO.

Experiment only

available for java

program.

metamorphic testing

(Zhang et al., 2021)
Integration

It is the first approach to

validate the existing CITO

generation systems.

Experiments were only

conducted on CITO

generation systems that

are not public.

Reinforcement learning

approach (Czibula et al.,

2018)

Integration
Reduced the test time and

stubbing effort.

Experiment does not

evaluate large software

systems.

Historical failure

information- based

rewards and additional

reward method (Yang et

al., 2021)

Integration

The sparse reward in TCP of

RL-based CI testing is

improved and the TCP effect

obtained by the reward with

additional reward is better

than those without additional

reward.

Information of the

requirement and code is

not used to design the

rewards.

Historical Reward

Strategies (Yang et al.,

2020)

Integration
Improved the ability of fault

detection of the test order.

The CI cycle and time are

limited to running huge

amounts of historical

data. The size of test

cases and execution

could affect the

effectiveness of test

prioritization history.

Reinforcement learning

approach with test suite-

based dynamic sliding

window and individual

test case-based dynamic

sliding window (Yang et

al., 2021)

Integration

Effective in improving the

test case prioritization effect

that better adopts the CI

environment.

The award function

might not be effective in

the situation of low failure

rate limitation in

industrial datasets.

Similarity and correlation

among the test cases were

not included.

NLP & LSTM (Deep

Learning Algorithms)

and search-based

approaches (genetic

algorithms and simulated

annealing) (Medhat et

al., 2020)

Integration

Enhanced the efficiency of

Continuous Testing in IoT

systems for prioritization and

selection purposes.

The accuracy of test

prioritization has to be

further improved. Only

several testing areas are

included, which are

integration testing and

regression testing.

Tan et al, Journal of System and Management Sciences, Vol. 12 (2022) No. 4, pp. 85-100

90

Two test case selection

approaches, class-level

FEST, and method-level

MEST, based on

framework Sapient (Li

et al., 2020)

Integration

Reduced test size and test

cost, with better fault

detection efficiency and cost-

effectiveness.

In rare cases, dynamic

binding in MEST may

lose some dependencies

when a subclass instance

is a parameter of

superclass.

Using coverage metrics

to classify the tests

which then a regression

test suite is created to

consist only of effective

and unique partially

redundant tests (Marijan

et al., 2019)

Integration

Improves the performance of

CI and significantly improves
fault-detection.

Regression testing

approach is still not

efficient enough to

reduce ineffective test

redundancy.

Hybrid multi-criteria

selection method using

Analytic Hierarchy

Process (AHP) and

Technique for

Order Preference by

Similarity to Ideal

Solution (TOPSIS)

(Abdulwareth et al.,

2021)

Integration

Accuracy is high as all the

tools are ranked accurately. It

is beginner-friendly and has

reduced the selection cost.

Experts indicated that the

taxonomy is complex and

could be difficult to use.

Test focus selection for

integration testing [19]
Integration

With a small number of

developed test cases, this

method can detect 80% of

integration errors in tested

applications.

This method has two

limitations, other than the

Java system this method

may not work, and even

in Java programs, it may

not be applicable for all

domains.

Stochastic scheduling

and Natural Language

Processing (NLP)

(Tahvili et al., 2019)

Integration

Achieved a more efficient

testing process and better

quality of software product.

Lesser human work and

judgment and more trustable

results.

The quality of the result

is dependent on human-

written SRS and test

specifications. Criteria of

test cases must be

measured before the first

execution. Specifications

that are written by

humans make it harder

and more complex for the

system.

An integration testing

framework and

evaluation metrics for

vulnerability detection

(Li 2018)

Integration
Provided effective black box

vulnerable mining detection.

It tends to look for

vulnerable patterns rather

than installed libraries.

Only a few vulnerable

mining methods are

Tan et al, Journal of System and Management Sciences, Vol. 12 (2022) No. 4, pp. 85-100

91

included.

Bayesian Optimization

Algorithm (BOA) with

three different structures

is GROOVE toolset

(Rafe et al., 2021)

Integration

Better in coverage and speed

compared to existing

approaches.

To achieve a set of test

objectives, explosions of

state space and test cases

might happen while

exploring paths.

A method for prioritzing

integration testing in

software product lines

based on feature model

(Akbari et al., 2017)

Integration

Prioritizing integration

testing based on feature

model

The researchers have not

yet developed an

algorithm to find the test

case reduction rate

(TCRR) and test

efficiency rate (TER),

which helps the domain

engineer during the test

process.

Set of integration test

coverage metrics

(Mukherjee et al., 2019)

Integration

This approach considers

multiple characteristics of

object-oriented programs

such as objects and methods.

Compared to other

approaches, this approach

also uses class relations

based on the design of objects

while ignoring the traditional

connected paths of various

methods.

The researchers used

only the first-order

mutants for the Java

mutation testing tool,

which may affect the

result of fault detection.

Integration Testing

Rules (ITR) model based

on four main models:

the reconciled solution

model, the data sources

models, the

transformations model,

and the test models

(Blanco et al., 2018)

Integration

Effectively find the

deficiencies to improve the

final results of the ER

application.

Less variety of case

studies to validate the

approach.

Time-Constrained

Fragment and

Compare (TCFC)

algorithm (Brkić et

al., 2018)

Integration

It is ideal for generating the

overview of differences

among tables in the database

within a given time frame.

It is possible to obtain a

less accurate comparison

of tables as a global

overview. Large table

comparison could block

up all the time available

and not all differences

can be detected.

Tan et al, Journal of System and Management Sciences, Vol. 12 (2022) No. 4, pp. 85-100

92

Rule-directed symbolic

execution using CTS-IC

(Zhang et al., 2019)

Unit

Implicit constraints assisted

CTS-IC to obtain high

coverage of the functions

with missing preconditions

Manual checking is

required to ensure the

correctness of implicit

constraints.

Automatic output

sampling for output

diversity in unit test

generation (Menendez et

al., 2022)

Unit

Outperformed other

generation approaches in

output uniqueness, mutation

score, and fault detection.

The Z3 solver restricts

the program size and thus

lowers the tool's

scalability. The definition

of diversity needs to be

revised to reduce

redundancy.

Co-generation of unit

tests and documentation

with template

invocations (Nassif et

al., 2021)

Unit

Tests generated are found to

be more readable than those

by humans or other state-of-

the-art automated techniques.

The results are highly

dependent on the

templates.

Unit test's quality

assessment using anti-

oracles (Cerioli et al.,

2021)

Unit

More accurate than the

manual code review done by

multiple students. The

accuracy is even slightly

higher than the three senior

experts.

This approach requires

the test specification to

have a certain level of

formality.

Mutation analysis

(Trautsch et al., 2020)
Integration, Unit

Able to analyze the

capabilities of the unit and

integration testing.

The evaluation was only

done on the java

program, others

programming language

projects were not tested.

Determine the

relationship between the

software tester,

personality

characteristics, and

software testing levels

using MBTI (Kamangar

et al., 2021)

Integration, Unit

Increased the effectiveness

and reliability of crowd-

based outsourced software

testing.

Limited dataset. More

testing done by the tester

would result in more

appropriate results. The

results would also be

affected by the tester’s

experience on using a

particular testing level.

3. Method and Results

Based on the literature review, we selected sOrTES (Tahvili et al., 2019) as the

recommended method for our study. The reasons why we select sOrTES as our

recommendation method are because sOrTES is able to assist testers to gain a better

understanding of the dependencies between the requirements during the early stages

of testing. Additionally, this method helps to reduce human judgment when selecting

Tan et al, Journal of System and Management Sciences, Vol. 12 (2022) No. 4, pp. 85-100

93

which test case should be executed first and the reliable result produced by sOrTES

that can help organizations achieve greater efficiency and higher quality of software

products during the testing process. With high-quality software testing, organizations

save on debugging costs during the testing phase and are able to expedite the release

of the final product.

3.1. Explanation of method works and algorithm design

sOrTES is a Python-based system for assisting automated decision-making,

consisting of two distinct phases, the extraction phase, and the scheduling phase. The

requirement coverage and dependencies of each test case are collected in the

extraction phase, and the execution time is abstracted from the external tool ESPRET

before entering the scheduling phase to set the ranking of the execution prioritized

test cases.

During the extraction phase, test cases are collected from the requirement

specification and test specification files as input in excel file format. Then, the data

will be generated in a table consisting of dependencies between test cases,

requirement coverage, and output columns. The dependency column is collected from

the excel file that contains all test cases. The dependencies can be determined when

there are two test cases that are related, for example, the input of test case A is related

to the output of test case B, which means test case A needs to wait for the complete

execution of test case B before it can be executed. The requirement coverage column

can be collected in test cases by counting the total number of requirements, while the

output column can be generated based on the number of test cases that can be tested

after each test case is inserted.

During the scheduling phase, the following algorithms are used to generate the

scheduling ranking that defines the best execution order. The R in Equation

(1) represents the result of each test case TCi, which may result in 1 as fail or 0 as

pass. This result can be tested from the sample function P in Equation (2) by

determining the dependencies between the TCs. For example in Equation (2), let's say

the TCj is dependent on TCi, the results of TCj, also known as Rj will always be 1 if TCi

was never tested before even though the TCj is passed. Once all the dependencies and

requirement coverage are found in all TCs, the F in Equation (3) can perform to

schedule ranking of test cases. The F is a feasible set for setting all possible ways of

testing within TCi according to the precedent Pi. The Pi is the precedents for each test

case TCi, to determine which TCi is directly dependent on, for example, if TC2 is

dependent on TC1, then the P2 will have TC1, P2 = {TC1}, where the P1 is an empty

set.

Tan et al, Journal of System and Management Sciences, Vol. 12 (2022) No. 4, pp. 85-100

94

(1)

(2)

 (3)

3.2. Implementation of the Algorithms

From the previous section, we discussed how the algorithms have been designed in

the previous section in order to achieve the automation of test cases dependencies

detection and test case scheduling to achieve the proposed decision-making system.

This information helps us to determine the dependencies detection workflow at

Integration Testing. The implementation details are a continuous work which

described the necessary packages, libraries, and pseudocodes, thus, we will first

review the python implementation as presented by Tahvili et al., 2018 before further

extending the work of the sOrTES.

The authors admitted that dependency detection should be started in the early

stage. Natural Language Processing techniques are utilized as the two required inputs,

namely requirement specification and test specification, are written in natural

language. The important information has been extracted from the documents and

mapped to each other to examine the interdependencies among the requirements and

test cases. The authors presented three steps to complete the dependencies linkage,

including test case extractor (Fig. 11), requirements extractor (Fig. 10), and test case

and requirement combiner (Fig. 13, Fig. 12). Requirements extraction algorithm

defines how the requirements can be extracted from the documents (.xlsx files) by

recording the requirement name, and input and output signals; Test case extraction

algorithm extracts the important information from the specification by using xlrd2

library package to track the relevant data. In the test case and requirement combiner

steps, two algorithms were presented where both of the results from the requirements

extractor and test case extractor are combined to create a dependency graph. With the

dependencies detected from the specifications, the authors made use of vis.js and

javascript libraries to visualize the graph.

Fig. 1: Snapshot of requirements extraction algorithm presented by Tahvili et al.,

(2018).

Tan et al, Journal of System and Management Sciences, Vol. 12 (2022) No. 4, pp. 85-100

95

Fig. 2. Snapshot of test case extraction algorithm presented by Tahvili et al., (2018).

Fig. 3: Snapshot of dependency detection between test cases algorithm presented by

Tahvili et al., (2018).

Figure 4. Snapshot of dependency detection between test cases algorithm presented by Tahvili

et al., (2018).

After the dependency analysis, the authors carry on the manual test case

scheduling process by utilizing ESPRET (Tahvili et al., 2018), a tool for calculating

the test case execution time to better improve the accuracy of ranking the test cases.

The approach measures the estimation of execution time according to the actual

execution time from historical execution data through NLP techniques, log analysis,

Tan et al, Journal of System and Management Sciences, Vol. 12 (2022) No. 4, pp. 85-100

96

and finally, regression models were applied. A summary of the steps taken by

ESPRET is demonstrated in Fig. 14. When there is no prior test execution data, the

system will parse the new test step by determining if the step is matched with the

previous execution. If there is no previous data, a baseline value will be assigned to

the test case. After the estimation of test case execution has been done, the polynomial

regression models are applied to obtain the actual execution time. Total execution

time will then be returned at the end of the process.

Fig. 5: ESPRET tool workflow diagram (adapted from Tahvili et al., (2018)).

From all of the information gathered and provided through the steps above-

mentioned, the automatic test scheduling can be optimized. The authors have done

an industrial case study to verify the usability of the proposed tool for dynamic

test case scheduling. The dependencies among the test cases and requirements have

been identified. Then, the requirements coverage is computed and test cases can

be ranked accordingly. Redundant test execution can be avoided through the

dynamic scheduling of the test case based on the dependencies change and cost is

effectively reduced.

4. Conclusion

Software bugs and defects could be deadly as they might cost billions of dollars and

countless precious times. Therefore in this work, over 30 unit test and integration test

papers with various methods or approaches were studied and analyzed to determine

the best functional software testing method. More than half of the papers were

Tan et al, Journal of System and Management Sciences, Vol. 12 (2022) No. 4, pp. 85-100

97

researching integration testing methods where CITO-related approaches, machine

learning-related methods, and selection of test element methods were the main

focuses. On the other hand, unit test generation, assessment, and performance testing

were the main focus for the unit testing papers that were being reviewed. A summary

of all the papers was illustrated in Table I with respective advantages and limitations

included. With all the papers being referenced and analyzed, sOrTES has chosen to be

our recommendation method in view of its ability to enable testers to better understand

the requirements dependencies, reduce human judgment during test case selection, as

well as all the exceptional outcomes of producing reliable results. Detailed

explanations and ways of implementation were as well discussed. This work has

provided a comprehensive view of recent works on the unit and integration testing

approaches proposed.

Authors’ Contributions

We reviewed unit testing and integration testing in this project as they are highly

correlated and are two fundamental levels of software testing. Then, we chose an

approach, sOrTES, a supportive tool for stochastic scheduling that will be used for

manual integration test cases.

Acknowledgments

We would like to take this opportunity to express our most sincere gratitude to our

subject lecturer, Ts. Dr. R. Kanesaraj A/L Ramasamy, who is a lecturer in the Faculty

of Computing and Informatics, Multimedia University Cyberjaya, Malaysia. He has

spent much time lecturing and guiding us throughout the completion of this work.

The work would not have been completed without his clear explanation and

constructive feedback. Especially during this Covid-19 pandemic, Dr. R. Kanesaraj

tried his best in providing us with both online and physical classes as well as

consultation. He is kind enough to sacrifice his time to clear out our doubts and

confusion regarding the work. No words can express our thankfulness to him.

References

Abdulwareth, A. J. & Al-Shargabi, A. A. (2021). Toward a multi-criteria framework
for selecting software testing tools. IEEE Access, 9, 158872- 158891,
DOI:10.1109/ACCESS.2021.3128071.

Akbari, Z., Khoshnevis, S., & Mohsenzadeh, M. (2017). A method for prioritizing
integration testing in software product lines based on feature model. International
Journal of Software Engineering and Knowledge Engineering, 27(4), 575–600.

Banitaan, S., Nygard, K., & Magel, K. (2017). Test focus selection for integration
testing. International Journal of Software Engineering and Knowledge Engineering,
27(8), 1145–1166.

Tan et al, Journal of System and Management Sciences, Vol. 12 (2022) No. 4, pp. 85-100

98

Blanco, R., Enríquez, J. G., Domínguez- Mayo, F. J., Escalona, M. J., & Tuya, J.
(2018). Early Integration testing for entity reconciliation in the context of
heterogeneous data sources. IEEE Transactions on Reliability, 67(2), 538-556.
DOI:10.1109/TR.2018.2809866.

Brkić, L. & Mekterović, I. (2018). A time- constrained algorithm for integration
testing in a data warehouse environment. Information Technology and Control, 47(1),
5-25.

Bulej, L. (2017). Unit testing performance with stochastic performance logic.
Automated Software Engineering, 24(1), 139- 187.

Cerioli, M., Lagorio, G., Leotta, M., & Ricca, F. (2021). Fight silent horror unit test
methods by consulting a TestWizard. Journal of Software: Evolution and Process,
e2396.

Czibula, G., Czibula, I.G., & Marian, Z. (2018). An effective approach for
determining the class integration test order using reinforcement learning. Applied Soft
Computing, 65, 517-530.

Jiang, S., Zhang, M., Zhang, Y., Wang, R., Yu, Q., & Keung, J. W. (2021). An
integration test order strategy to consider control coupling. IEEE Transactions on
Software Engineering, 47(7), 1350-1367. DOI:10.1109/TSE.2019.2921965.

Kamangar, Z. U., Siddiqui, I. F., Arain, Q. A., Kamangar, U. A., & Qureshi, N. M.
(2021). Personality characteristic-based enhanced software testing levels for crowd
outsourcing environment. KSII Transactions on Internet and Information Systems
(TIIS), 15(8), 2974-2992, 2021.

Lima, J. A. P. & Vergilio, S. R. (2020). Test case prioritization in continuous
integration environments: A systematic mapping study. Information and Software
Technology, 121, 106268.

Li, J. (2018). An integration testing framework and evaluation metric for vulnerability
mining methods. China Communications, 15(2), 190-208.
DOI:10.1109/CC.2018.8300281.

Li, Y., Wang, J., Yang, Y., & Wang, Q. (2020). An extensive study of class-level and
method-level test case selection for continuous integration. Journal of Systems and
Software, 167, 110614, 2020.

Marijan, D., Gotlieb, A.. & Liaaen, M. (2019). A learning algorithm for optimizing
continuous integration development and testing practice,” Software: Practice and
Experience, 49(2), 192-213.

Menendez, H. D., Boreale, M., Gorla, D., & Clark, D. (2022). Output sampling for
output diversity in automatic unit test generation. IEEE Transactions on Software
Engineering, 48(1), 295-308. DOI:10.1109/TSE.2020.2987377.

Tan et al, Journal of System and Management Sciences, Vol. 12 (2022) No. 4, pp. 85-100

99

Medhat, N., Moussa, S. M. Badr, N. L., & Tolba, M. F. (2020). A framework for
continuous regression and integration testing in iot systems based on deep learning
and search-based techniques. IEEE Access, 8, 215716-215726.
DOI:10.1109/ACCESS.2020.3039931.

Mukherjee, D. & Mall, R. (2019). An integration test coverage metric for Java
programs. International Journal of System Assurance Engineering and Management,
10(4) 576–601.

Nassif, M., Hernandez, A., Sridharan, A., & Robillard, M. P. (2021). Generating unit
tests for documentation. IEEE Transactions on Software Engineering.
DOI:10.1109/TSE.2021.3087087.

Rafe, V., Mohammady, S., & Cuevas, E. (2021). Using Bayesian optimization
algorithm for model-based integration testing. Soft Computing, 1-23.

Tahvili, S. (2018). Functional dependency detection for integration test cases. 2018
IEEE International Conference on Software Quality, Reliability and Security
Companion (QRS-C), 207-214. DOI:10.1109/QRS-C.2018.00047.

Tahvili, S., Pimentel, R., Afzal, W., Ahlberg, M., Fornander, E., & Bohlin, M.
sOrTES: A supportive Tool for stochastic scheduling of manual integration test cases.
IEEE Access, 7, 12928-12946. DOI:10.1109/ACCESS.2019.2893209.

Tahvili, S., Afzal, W., Saadatmand, M., Bohlin, M., & Ameerjan, S. H. (2018).
ESPRET: A tool for execution time estimation of manual test cases. Journal of
Systems and Software, 146, 26-41.

Trautsch, F., Herbold, S., & Grabowski, J. (2020). Are unit and integration test
definitions still valid for modern Java projects? An empirical study on open-source
projects. Journal of Systems and Software, 159, 110421.

Wang, Y., Zhu, Z., Yu, H., & Yang, B. (2018). Risk analysis on multi-granular flow
network for software integration testing. IEEE Transactions on Circuits and Systems
II: Express Briefs, 65(8), 1059-1063. DOI: 10.1109/TCSII.2017.2775442.

Yang, Y., Li, Z., Shang, Y., & Li, Q. (2021). Sparse reward for reinforcement
learning‐based continuous integration testing. Journal of Software: Evolution and
Process, e2409.

Zhang, M., Keung, J. W., Chen, T. Y., & Xiao, Y. (2021. Validating class integration
test order generation systems with Metamorphic Testing. Information and Software
Technology, 132, 106507.

Zhang, M., Keung, J. W., Xiao, Y., & Kabir, M. A. (2021). Evaluating the effects of
similar-class combination on class integration test order generation. Information and
Software Technology, 129, 106438.

Tan et al, Journal of System and Management Sciences, Vol. 12 (2022) No. 4, pp. 85-100

100

Zhang, M., Jiang, S., Zhang, Y., Wang, X., & Yu, Q. (2017). A multi-level feedback
approach for the class integration and test order problem. Journal of Systems and
Software, 133, 54-67.

Zhang, M. Z., Gong, Y. Z., Wang, Y. W., & Jin, D. H. (2019). Unit test data
generation for c using rule-directed symbolic execution. Journal of Computer Science
and Technology, 34(3), 670-689.

Zhang, Y., Jiang, S., Wang, X., Chen, R., & Zhang, M. (2019). An optimization
algorithm applied to the class integration and test order problem. Soft Computing,
23(12), 4239- 4253.

